НЕОРГАНИЧЕСКАЯ ХИМИЯ / INORGANIC CHEMISTRY

DOI: https://doi.org/10.18454/CHEM.2024.1.2

ГОМОЛОГИЧЕСКИЕ СЕРИИ ХИМИЧЕСКИХ СОЕДИНЕНИЙ В ЧЕТЫРЕХКОМПОНЕНТНЫХ СИСТЕМАХ ($A^{A_{+}} - B^{B_{+}} - D^{D_{+}} - C^{C_{-}}$) И ($LA^{3_{+}} - NI^{2_{+}} - NI^{3_{+}} - O^{2_{-}}$) В ОБОБЩЕННОМ ВИДЕ

Научная статья

Ундалов Ю.К.^{1,}*

¹ Физико-технический институт имени А.Ф. Иоффе, Санкт-Петербург, Российская Федерация

* Корреспондирующий автор (undal[at]yandex.ru)

Аннотация

В работе впервые представлен способ расчета формул гомологических серий химических соединений четырехкомпонентных систем (А^{a+}-B^{b+}-D^{d+}-C^{c-}) и (La³⁺-Ni²⁺-Ni³⁺-O²⁻) в обобщенном виде. Так как способ расчета формул гомологических серий трехкомпонентной системы подтвержден многочисленными экспериментами, осуществлена возможность распространить его на четырехкомпонентные системы. Формулы гомологических серий в обобщенном виде имеют следующий вид:

 $A_{(r+w)(n-1-k)+t}bdc B_{radc} D_{wabc} C_{(r+w)(n-k)+t}abd$

 $A_{tbdc}B_{\{(t+w)(n-1-k)+r\}adc}D_{wabc}C_{\{(t+w)(n-k)+r\}abd} \text{ II } A_{tbdc}B_{radc}D_{\{(t+r)(n-1-k)+w\}abc}C_{\{(t+r)(n-k)+w\}abd}.$

Для системы (La³⁺-Ni²⁺-Ni³⁺-O²⁻) рассчитано одиннадцать гомологических серий, четыре из которых включают известные соединения, относящиеся к фазам Риддлесдена-Поппера: La₁₀₁₋₂Ni²⁺6Ni³⁺6O_{15n+12}, La_{8n-4}Ni²⁺₃Ni³⁺6O_{12n+6}, La_{22n} - 14Ni²⁺6Ni³⁺18 Оззп + 12 и Lа14п - 10Ni²⁺3Ni³⁺12 О21п + 6. Разработанный здесь способ расчета гомологических серий может быть использован для любых систем ионов химических элементов.

Ключевые слова: гомологические серии, химические соединения, заряженные кластеры, способ расчета, четырехкомпонентные системы, ионы химических элементов.

HOMOLOGICAL SERIES OF CHEMICAL COMPOUNDS IN THE FOUR COMPONENT SYSTEMS (A^{A+} – B^{B+} – $D^{D^+} - C^{C_-}$) AND (LA^{3+} - NI^{2+} - NI^{3+} - O^{2-}) IN GENERALIZED FORM

Research article

Undalov Y.K.^{1,}*

¹ Ioffe Institute, Russian Academy of Sciences, Saint-Petersburg, Russian Federation

* Corresponding author (undal[at]yandex.ru)

Abstract

The work presents for the first time the method of calculation of formulas of homological series of chemical compounds of four-component systems (A^{a+}-B^{b+}-D^{d+}-C^{c-}) and (La³⁺-Ni²⁺-Ni³⁺-O²⁻) in generalized form. Since the method of calculating the formulas of homological series of three-component systems has been confirmed by numerous experiments, the possibility of extending it to four-component systems has been implemented. The formulas of homological series in generalized form have the following form:

 $A_{(r+w)(n-1-k)+t}bdcB_{radc}D_{wabc}C_{(r+w)(n-k)+t}bdd$

 $A_{tbdc}B_{\{(t+w)(n-1-k)+r\}adc}D_{wabc}C_{\{(t+w)(n-k)+r\}abd} \text{ and } A_{tbdc}B_{radc}D_{\{(t+r)(n-1-k)+w\}abc}C_{\{(t+r)(n-k)+w\}abd}.$ Eleven homological series have been calculated for the $(La^{3+}-Ni^{2+}-Ni^{3+}-O^{2-})$ system, four of which include known compounds belonging to the Riddlesden-Popper phases: $La_{10n-2}Ni^{2+}_{6}Ni^{3+}_{6}O_{15n+12}$, $La_{8n-4}Ni^{2+}_{3}Ni^{3+}_{6}O_{12n+6}$, $La_{22n-14}Ni^{2+}_{6}Ni^{3+}_{18}O_{33n}$ + 12 μ La_{14n} - 10Ni²⁺₃Ni³⁺₁₂O_{21n+6}. The method of calculation of homological series developed here can be used for any systems of ions of chemical elements.

Keywords: homological series, chemical compounds, charged clusters, calculation method, four-component systems, ions of chemical elements.

Введение

В многокомпонентных системах химических элементов (ХЭ) химические соединения (ХС) объединяются в гомологические серии (ГС) [1], [2]. Следует заметить, что под многокомпонентными системами понимаются т.е., которые содержат три, четыре или пять ХЭ, и которые составляют основу кристаллической решетки ХС. Состав, кристаллическая структура и фундаментальные свойства ХС-гомологов в ГС изменяются периодично и закономерно [1], [2]. Знание законов формирования ГС дает возможность прогнозировать существование формул новых многокомпонентных ХС. Так, например, зная эти законы, на основе известного (базового), т.е. экспериментально полученного, **ХС**_{п(bas)} можно определить формулу ГС, которой принадлежит это ХС_{п(bas)}. Следовательно, по формуле этой ГС можно определить формулы других неизвестных ХС-гомологов, которые в отдельных случаях могут превосходить по своим свойствам XC_{n(bas)}. При этом, учитывая непрерывность ГС, особенно важно иметь в виду, что гомологи XC_n с {n < n(bas)} этой ГС, предшествующие по порядку XC_{n(bas)}, должны также существовать [3], [4], [6], [7], [9].

Как показано в работах [3], [5], [8], разработанный способ расчета формул трехкомпонентных ГС подтвержден многочисленными экспериментальными результатами, взятыми из литературы. Из приведенных выше работ выяснилось, что одинаковые геометрические особенности треугольника и треугольной пирамиды, представляющих трех-, четырех- и пятикомпонентные системы ХЭ, позволяют использовать разработанный для трехкомпонентной системы способ расчета формул ГС для четырех- и пятикомпонентных систем ионов ХЭ. Этими работами показана относительная простота расчета формул ХС по сравнению, например, с полуэмпирическими квантово-химическими методами Хартри–Фока–Рутаана и Хартри–Фока–Слейтера расчета отдельно взятых ХС. Однако, работы [10], [11], [12] не могут способствовать расчету формул ГС, так как законы образования отдельно взятых ХС отличается от законов формирования ГС.

Автором работы [13] приведены результаты кристаллохимического анализа структур для составов $A^{1}Me^{11}Me^{111}F_{6}$: представлен прогноз формул новых соединений со структурой типов K_2PtCl_6 , RbNiCrF₆ (пирохлор), гагаринита и КНоВеF₆. Например, в соединениях $A^{1}Me^{11}Me^{111}F_{6}$ (пространственная группа $C_{h}^{5} - F_{d}3_{m}$) возможно участие следующих XЭ: $A^{1} = Li$, K, Rb, Cs и др.; $Me^{11} = Mg$, Ca, Ti, V, Fe, Ni; $Me^{111} = Ni$, Co, Fe, Mn, Ti, Al, Cu.

Так как способ расчета формул гомологических серий трехкомпонентной системы подтвержден многочисленными экспериментами, в работе [6], [9] реализована возможность распространить его на четырехкомпонентные системы (A^{a+}-B^{b+}-D^{d+}-C⁻). Однако, судя по литературе, в силу своей сложности изучения множества неизвестных ХС в четырехкомпонентных системах последние по сравнению с трехкомпонентными системами изучены намного меньше. По этой причине в настоящее время подтвердить экспериментально достоверность расчета четырехкомпонентных ГС, как это продемонстрировано для трехкомпонентных систем ХЭ [8], нет возможности.

В работах [14], [15], [16], [17] авторы, исследуя систему (La – Ni – O), заявили о существовании ГС: La_nNi_nO_{3n - 1} [14]; La_{n+1}Ni_nO_{3n+1}, n = 1-5 [15], [16]; La_{n+1}Ni_nO_{3n-1}, n = 7, 9, 13 и 30 [17]; La_{2n-4}Ni₂O_{4n-5}, n = 5-8 [18]. Однако, в работах [19], [20] сообщается о присутствии Ni²⁺ и Ni³⁺ в фазах Руддлесдена–Поппера (**RP**) La_{n + 1}Ni_nO_{3n + 1}. Следовательно, следуя работам [20], [21] и условию электронейтральности формул XC в приведенных в [14], [15], [16], [17], [18] формулах ГС должны присутствовать два разновалентных иона никеля, Ni²⁺ и Ni³⁺. Исходя из этого, все формулы этих ГС относятся не к трехкомпонентным, а к четырехкомпонентным ионов и должны выглядеть так: La_nNi_nO_{3n-1} [14] = La_nNi²⁺₂Ni³⁺_{n-2}O_{3n-1}, La_{n+1}Ni_nO_{3n+1} [15], [16] = La_{n+1}Ni²⁺Ni³⁺_{n-1}O_{3n+1}, La_{n+1}Ni_nO_{3n-1} [16] =

 $La_{n+1}Ni^{2+}5Ni^{3+}_{n-5}O_{3n-1}$ и $La_{2n-4}Ni_nO_{4n-5}$ [17] = $La_{2n-4}Ni^{2+}_{n-2}Ni^{3+}_2O_{4n-5}$.

В работе [21] в системе (La – Cu – O) получена серия образцов, составы которых подчиняются формуле фаз Руддлесдена–Поппера La_{n + 1}Cu _nO_{3n + 1}. Авторы работы [21] на основании рентгенофазового анализа считают, что образцы этой ГС, обладающих структурой перовскита K₂FeF₄, могут быть представлены чередующимися слоями La₂Cu²⁺O₄ и LaCu³⁺O₃. Следовательно, на этом основании образцы, представленные в [21] должны содержать Cu²⁺ и Cu³⁺. В этом случае, на наш взгляд, авторам работы [21] следовало бы принять формулу ГС фаз Руддлесдена–Поппера такой: La_{n + 1}Cu _nO_{3n + 1}[23] = La_{n + 1}Cu²⁺Cu³⁺_{n-1}O_{3n + 1}, что, к сожалению, сделано не было.

В литературе известны работы, в которых приводятся химические формулы ряда экспериментально полученных образцов, принадлежащих системе (иттрий – барий – медь – кислород). Так, например, в работах [22], [23] формулы XC объединены формулой $Y_2Ba_4Cu_{6+n}O_{14+n}$, где согласно авторам $\mathbf{n} \ge 0$ и \mathbf{n} – целые числа. Очевидно, формула XC должна быть электронейтральной, чего нельзя сказать о формуле $Y_2Ba_4Cu_{6+n}O_{14+n}$ при конкретизации валентного состояния иона меди в виде (2+) или (3+). В соответствии с тем, что согласно [24] в образцах системы (иттрий – барий – медь – кислород) медь содержится в двух разных валентных состояниях, Cu^{2+} и Cu^{3+} , формулу $Y_2Ba_4Cu_{6+n}O_{14+n}$ согласно [7] следует представить так: $Y_2Ba_4Cu_{6+n}O_{14+n}$ [25] $\equiv Y_2Ba_4Cu_{2^+4+n}Cu^{3+}_2O_{14+n}$. Следовательно, по этой причине формулу $Y_2Ba_4Cu_{6+n}O_{14+n}$ [25] $\equiv Y_2Ba_4Cu_{2^+4+n}Cu^{3+}_2O_{14+n}$, на наш взгляд следует отнести к пятикомпонентной системе ($Y^{3+} - Ba^{2+} - Cu^{2+} - Cu^{3+} - O^{2-}$) и здесь рассматриваться не будет.

Вообще, при отсутствии знания законов формирования ГС в многокомпонентных системах, например, в (La³⁺-Ni²⁺-Ni³⁺-O²⁻), (La³⁺-Cu²⁺-Cu³⁺-O²⁻) и (или) (Y³⁺-Ba²⁺-Cu²⁺-Cu³⁺- O²⁻) среди множества формул многокомпонентных ХС можно найти немало таких, которые объединяются какой-либо формулой, не относящейся к ГС. Как будет показано ниже, к таким формулам, по нашему мнению, не относящихся к формулам ГС следует отнести те, которые опубликованы в работах [14], [15], [16], [17], [18], а также в [19], [20], [21], [22] и в [23], [24], [25].

Цель работы: используя геометрические особенности треугольника и треугольной пирамиды, представляющих систему ионов ХЭ, разработать способ расчета формул ГС четырехкомпонентных систем ионов ХЭ в *обобщенном виде.*

Описание четырехкомпонентной системы ионов ХЭ и обоснование способа расчета ГС химических соединений

Как выяснилось в работах [3], [4], [5], [6], а также в [7], [8], [9], из-за одинаковых геометрических особенностей треугольника и треугольной пирамиды появляется возможность распространить в **обобщенном виде** способ расчета ГС трехкомпонентной системы на четырехкомпонентную систему ($A^{a+} - B^{b+} - D^{d+} - C^{-}$). На основании приведенных работ способ расчета ГС можно обосновать следующим образом:

1. Правило (или схему) формирования ГС химических соединений можно сформулировать, если рассмотреть все возможные направления химического взаимодействия компонент системы, которые позволяет сочетание количества валентных электронов ХЭ и состава сложных атомных кластеров системы, активированных ХС и заряженных кластеров (**3K**). Геометрические особенности треугольника и треугольной пирамиды, представляющих системы ионов химических элементов, позволяют из множества химических взаимодействий выбрать те, которые ответственны за формирование ГС. С этой целью система ХЭ представляется треугольной пирамидой, в углы которой помещены ионы ХЭ.

2. Геометрические особенности треугольника и треугольной пирамиды заключаются в графическом отображении взаимодействия любой пары реагирующих компонент системы отрезком прямой, когда каждая пара реагентов и продуктов их взаимодействия располагаются на одном, принадлежащим только им, отрезке прямой. *В точке пересечения отрезков прямых, связывающих различные пары реагентов, находится общий для этих пар продукт взаимодействия, ЗК или XC.* Эта особенность обусловлена отличием законов взаимодействия различных пар реагентов, что, в свою очередь, обусловлено различным сочетанием валентности ионов ХЭ и состава пар реагентов.

Следовательно, поиск новых XC основан на том, что *гомологи* трех- и четырехкомпонентных систем *располагаются в треугольнике и в треугольной пирамиде на пересечении отрезков, которые связывают различные пары реагентов*. При этом учитывается то, что гомологи трехкомпонентных систем, которые расположены на боковых гранях треугольной пирамиды, принимают участие в формировании четырехкомпонентных ГС.

3) ГС формируются в зависимости от направления развития с помощью цепи последовательно протекающих взаимодействий четырехкомпонентных XC-гомологов (\mathbf{YXC}_n) с ионом A^{a^+} – направление развития $\Gamma C - A_c C_a$, или с B^{b^+} – направление развития $\Gamma C - D_c C_d$. При этом, в формировании ΓC участвуют двухкомпонентные 3К ($\mathbf{J3K}_n$) и трехкомпонентные 3К ($\mathbf{T3K}_n$) системы ($A^{a^+} - B^{b^+} - D^{d^+}$), а также четырехкомпонентные 3К ($\mathbf{H3K}_n$) при взаимодействии с анионом. Сказанное описывается следующей схемой формирования четырехкомпонентной ΓC :

Максимальное значение **n** для рассматриваемой ГС определяется экспериментально, где **n** – положение гомолога в ГС и (1 ≤ **n**). В тексте определяемые формулы ХС и ЗК как реагентов, так и продуктов их взаимодействия, выделяются жирным шрифтом.

4. XC_n и 3K_n, занимающие одно и тоже положение в одной и той же ГС связаны следующей реакцией:

$$3 K_n + C^{c-} \to XC_n \tag{2}$$

5. Активированные $4XC_n$ -гомологи располагаются в плоскости $(A_cC_a - B_cC_b - D_cC_d)$, что видно на рисунке 1 и рисунке 3. Причем, $4XC_n$ -гомологи, принадлежащие ГС, которая развивается в сторону A_cC_a , находятся на отрезке $\{A_cC_a - (TXC_n = \tau. 23)\}$, где $(TXC_n = \tau. 23)$ принадлежит системе $(B^{b^+} - D^{d^+} - C^{c^-})$ – рисунок 3.

ЧХС_п-гомологи, принадлежащие ГС, которая развивается в сторону **B**_c**C**_b, находятся на отрезке {B_cC_b – (TXC_n = т. 4)}, где (TXC_n = т. 4) принадлежит системе ($A^{a^+} - D^{d^+} - C^{c^-}$) – рисунок 3. В случае ГС, которая развивается в сторону **D**_c**C**_d, ее ЧХС_n-гомологи находятся на отрезке {D_cC_d – (TXC_n = т. 25)}, где (TXC_n = т. 25) принадлежит системе ($A^{a^+} - B^{b^-} - C^{c^-}$) – рисунок 3. В тексте и на рисунках принимаются следующие обозначения: т. 1 ≡ точка 1, т. 2 ≡ точка 2, т. 3 ≡ точка 3 и т.д.

6. Согласно взаимосвязи (2), кластеры $4XC_n$ -гомологи, $43K_n$ -гомологи и $T3K_n$, относящиеся к одной и той же ГС, должны располагаться в пирамиде **в одной плоскости** – в треугольнике, где формируется рассматриваемая ГС. Следовательно, для того, чтобы выявить расположение в пирамиде плоскости , в которой ГС развивается в сторону A_cC_i и определить нахождение в этой плоскости кластеров $43K_n$ -гомологов, необходимо плоскости { $(TXC_{n=1} = \tau. 5) - A_cC_a - C^{c-}$ } (рис. 1) и (или) { $(TXC_n = \tau. 23) - A_cC_a - C^{c-}$ } (рис. 3) продолжить до пересечения с основанием пирамиды ($A^{a+} - B^{b+} - D^{d+}$). В результате оказалось, что ГС, которая развивается в сторону A_cC_a , формируется в плоскости { $(Д3K_n = \tau. 26) - A^{a+} - C^{c-}$ } (рис. 3).

Аналогичные действия необходимо провести с треугольниками {($TXC_{n=1} = т. 8$) – B_cC_b – C^{-} } (рис. 1) и (или) {($TXC_n = т. 24$) – B_cC_b – C^{-} } (рис. 3), а также с {($TXC_{n=1} = т. 2$) – D_cC_d – C^{-} } (рис. 1) и (или) {($TXC_n = т. 25$) – D_cC_d – C^{-} } (рис. 3) для ГС, которые характеризуют развитие ГС в направлении B_cC_b и D_cC_d , соответственно: ГС, которая развивается в сторону B_cC_b , формируется в плоскости {($Д3K_{n=1} = т. 9$) – B^{b+} – C^{-} } (рис. 1) и (или) в плоскости {($Д3K_n = т. 28$) – D^{d+} – C^{-} } (рис. 1) и (или) в плоскости {($Д3K_n = т. 28$) – D^{d+} – C^{-} } (рис. 1) и (или) в плоскости {($Д3K_n = т. 28$) – D^{d+} – C^{-} } (рис. 1) и (или) в плоскости {($Д3K_n = т. 28$) – D^{d+} – C^{-} } (рис. 3).

Полученные таким образом плоскости {(ДЗК_{n=1} = т. 6) – $A^{a+} – C^{c-}$ }, {(ДЗК_{n=1} = т. 9) – $B^{b+} – C^{c-}$ } и {(ДЗК_{n=1} = т. 3) – $B^{b+} – C^{c-}$ } (рис. 1), а также плоскости {(ДЗК = т. 26) – $A^{a+} – C^{c-}$ }, {(ДЗК = т. 27) – $B^{b+} – C^{c-}$ } и {(ДЗК = т. 28) – $D^{d+} – C^{c-}$ } (рис. 3) содержат все кластеры ЧХС_n, ЧЗК_n и ТЗК_n, которые относятся к ГС, развивающихся в сторону A_cC_a , B_cC_b и D_cC_d .

7. В частности, ЧЗК_n-гомологи, принадлежащие ГС, которая развивается в сторону A_cC_a , располагаются на отрезке $\{A_cC_a - (Д3K_n = т. 26)\}$, где ДЗК_n принадлежит системе ($B^{b+} - D^{d+}$). В то же время, ЧЗК_n-гомологи, принадлежащие ГС, которая развивается в сторону B_cC_b , располагаются на отрезке $\{B_cC_b - (Д3K_n = т. 27)\}$, где ДЗК_n принадлежит системе ($A^{a+} - D^{d+}$), что отображено на рисунке 3 и на рисунке 4.

 $43K_n$ -гомологи, принадлежащие ГС, которая развивается в сторону D_cC_d , располагаются на отрезке ($D_cC_d - (Д3K_n = т. 28)$, где Д3 K_n принадлежит системе ($A^{a+} - B^{b+}$) (рис. 3).

8. ГС состоит из ветви ХС и ветви 3К, которые связаны реакцией (2). Обе ветви одной и той же ГС развиваются в сторону одного и того же двухкомпонентного ХС (ДХС), A_cC_a, или B_cC_b, или D_cC_d, т.е. по мере развития ГС ее члены обогащаются соответствующим ДХС.

9. Составы ближайших членов одной и той же ГС отличаются на одну и ту же формулу в виде Δ:

$$\Delta = XC_{n+1} - XC_n = 3 K_{n+1} - 3 K_n.$$
(3)

10. Заряды всех ЧЗК одной и той же ГС одинаковы.

,

В том случае, когда определяется формула ГС, которой принадлежит какое-либо известное (базовое) ЧХС _{n(bas)}, но с неизвестным значением **n(bas)**, расчет формулы ГС производится следующим образом: сначала определяются формулы ЧЗК_{n(bas)}, ТЗК_{n(bas)}, ЧХС_{n(bas) + 1} и ЧЗК_{n(bas) + 1}, где ТЗК_{n(bas)} и ТЗК_{n(bas) + 1} принадлежат системе ($A^{a+}-B^{b+}-D^{d+}$). Затем по зависимости (3) рассчитывается формула Δ . Формулы ЧХС_{n = 1} и ЧЗК_{n = 1} рассчитываются путем вычитания *максимального* количества раз формулы Δ из формул ЧХС_{n(bas)} и ЧЗК_{n(bas)} *при условии сохранения* в составе ЧХС_{n = 1} и ЧЗК_{n = 1} *минимального* количества того катиона, который содержится в формуле Δ , т.е. при условии сохранения формул рассчитываемых ХС и ГС четырехкомпонентными:

$$XC_{n(bas)} - k \cdot \Delta = XC_{n=1}, \tag{4}$$

$$3K_{\mathfrak{n}(\text{ bas })} - k \cdot \Delta = 3K_{n=1} \tag{5}$$

где *k* ≥ 0. В случае, когда *k* = 0, то n(bas) = 1.

11. Формула любого гомолога в одной и той же ГС определяется согласно [6]:

ветвь XC:
$$XC_{n=1} + (n-1) \cdot \Delta = XC_n$$
 (6)

ветвь ЗК :
$$3K_{n=1} + (n-1) \cdot \Delta = 3K_n$$
 (7)

12. При расчете ГС следует учитывать вариант, когда один из химических элементов может иметь разную валентность, являясь в кристаллической решетке ХС не легирующим компонентом, а одним из основных химических элементов кристаллической решетки.

В основном, исследователям требуется определить формулы ГС, которым принадлежит какое-либо уже известное (базовое) ЧХС_{n(bas)}. В формировании этих ГС могут принимать участие сочетание любых ХС_n включая ТХС_{n = 1} и ТХС_n >1.

2.1. Формирование четырехкомпонентных ГС в системе ($A^{a+} - B^{b+} - D^{d+} - C^{c-}$) с участием $TXC_{n=1} = A_{bc}B_{ac}C_{2ab}$, $A_{dc}D_{ac}C_{2ad}$ и $B_{dc}D_{bc}C_{2bd}$, принадлежащих $\alpha m(p)$ -ГС

Рассмотрим формирование ГС в системе ($A^{a^+} - B^{b^+} - D^{d^+} - C^{c^-}$) начиная с исходного состояния, когда в углах представляющей ее треугольной пирамиды находятся только ионы ХЭ. Формирование четырехкомпонентных ГС в системе ($A^{a^+} - B^{b^+} - D^{d^+} - C^{c^-}$) начинается с участия в этом процессе первых гомологов $TXC_{n=1}$, принадлежащих $\alpha m(p)$ -ГС [3] во всех трехкомпонентных системах ($A^{a^+} - B^{b^+} - C^{c^-}$), ($B^{b^+} - D^{d^+} - C^{c^-}$) и ($A^{a^+} - D^{d^+} - C^{c^-}$), представленных боковыми гранями пирамиды. Так, взаимодействие положительно заряженных ионов ХЭ с анионом приводит к образованию активированных двухкомпонентных ХС (**ДХС**) A_cC_a , B_cC_b и D_cC_d , которые взаимодействуя друг с другом производят активированные TXC_n согласно реакциям – рис. 1, рис. 3:

$$tbA_{c}C_{a} + raB_{c}C_{b} = A_{tbc}B_{rac}C_{(t+r)ab}$$
(8)

$$tdA_{c}C_{a} + waD_{c}C_{d} = A_{tdc}D_{wac}C_{(t+r)ad}$$
(9)

$$rdB_{c}C_{b} + wbD_{c}C_{d} = B_{rbc}D_{wac}C_{(r+w)bd}$$
⁽¹⁰⁾

где (0 < t, r, w) и при (t = r = w) образуются $TXC_{n=1}$ и $T3K_{n=1}$ и $\alpha m(p)$ -ГС.

При взаимодействии ДХС с А^{a+}, В^{b+}, D^{d+} образуются ТЗК_{n = 1} согласно уравнениям – рис. 1, рис. 3:

$$tbA_{c}C_{a} + racB^{b+} = raB_{c}C_{b} + tbA^{a+} = ([A_{tbc}B_{rac}C_{tbb}]^{rabc+} = = ([A_{tcc}B_{rac}C_{rab}]^{tabc+} = [A_{bc}B_{ac}C_{ab}]^{abc+} = T3K_{n=1} = T. 1)$$
(11)

$$tdA_{c}C_{a} + wacD^{d+} = waD_{c}C_{d} + tdA^{a+} = \left(\left[A_{tdc}D_{wac}C_{tab} \right]^{wadc+} = \left(\left[A_{tdc}D_{wac}C_{tab} \right]^{wadc+} - \left[A_{tdc}D_{wac}C_{tab} \right]^{wadc+} - \left[A_{tdc}D_{wac}C_{tab} \right]^{wadc+} - \left[\left[A_{tdc}D_{wac}C_{tab} \right]^{wadc+} - \left[A_{tdc$$

$$r dB_cC_b + wbcD^{d+} = waD_cC_d + r dB^{b+} = [B_{rdc}D_{wbc}C_{wbd}]^{rabc+} =$$

$$= \left(\left[B_{ddc} D_{wbc} C_{rab} \right]^{wabc+} = \left(\left[B_{dc} D_{bc} C_{bd} \right]^{bdc^{+}+} = T3K_{n=1} = T. 4 \right)$$
(13)

Формулы ТЗК в уравнениях (11), (12) и (13) справедливы при (t = r = w) – рисунок 1.

В соответствии с [8], [10] и согласно зависимости (2) при (t = r = w) взаимодействующие друг с другом катионы производят кластеры ($A_{bc}B_{ac}$]^{2abc+} =ДЗK_{n = 1} = т. 3), ([$A_{dc}D_{ac}$]^{2abc+} = ДЗK_{n = 1} = т. 9), ([$B_{dc}D_{bc}$]^{2bdc+} = ДЗK_{n = 1} = т. 6), а взаимодействия кластеров ДЗK_{n = 1} и ТЗK_{n = 1} с анионом производят кластеры ($A_{bc}B_{ac}C_{2ab}$ = TXC_{n = 1} = т. 2), ($A_{dc}D_{ac}C_{2ad}$ = TXC_{n = 1} = т. 8) и ($B_{dc}D_{bc}C_{2bd}$ = TXC_{n = 1} = т. 5). ($B_{dc}D_{bc}C_{2bd}$ = TXC_{n = 1} = т. 5). Учитывая уравнения (8)-(13) формулы кластеров в виде т. 1- т. 9 справедливы при (t = r = w) и относятся к $\alpha m(p)$ -ГС [3], [5], [8], [10] – рисунок 1.

Рисунок 1 - Система ($A^{a^+} - B^{b^+} - D^{d^+} - C^{c^-}$) DOI: https://doi.org/10.18454/CHEM.2024.1.2.1

 $(\mathbf{Y}_{3}\mathbf{K}_{n=1} = \mathbf{T}, \mathbf{10} = [\mathbf{A}^{a_{+}}_{bdc}\mathbf{B}^{b_{+}}_{adc}\mathbf{D}^{d_{+}}_{abc}\mathbf{C}^{c_{-}}_{abd}]^{2abdc_{+}}), (\mathbf{Y}_{3}\mathbf{K}_{n=1} = \mathbf{T}, \mathbf{11} = \mathbf{A}^{a_{+}}_{bdc}\mathbf{B}^{b_{+}}_{adc}\mathbf{D}^{d_{+}}_{abc}\mathbf{C}^{c_{-}}_{3abd}), (\mathbf{T}_{3}\mathbf{K}_{n=1} = \mathbf{T}, \mathbf{12} = [\mathbf{A}_{bdc}\mathbf{B}_{adc}\mathbf{D}_{abc}]^{3abdc_{+}});$

 $\begin{array}{l} \Gamma \text{C-1: } 43K_{n\,=\,1} = \texttt{T. 10, } 4XC_{n\,=\,1} = \texttt{T. 11, } (43K_{n\,=\,2} = \texttt{T. 13} = [A_{3bdc}B_{adc}D_{abc}C_{3abd}]^{2abdc+} \text{, } (4XC_{n\,=\,2} = \texttt{T. 14} = A_{3bdc}B_{adc}D_{abc}C_{5abd}), \\ T3K_{n\,=\,2} = \texttt{T. 15} = [A_{3bd}B_{ad}D_{ab}]^{5abd+} \text{;} \end{array}$

 $\Gamma C-3: \ \text{Y3K}_{n=1} = \text{T. 10, } \ \text{YXC}_{n=1} = \text{T. 11, } \ (\text{Y3K}_{n=2} = \text{T. 19} = [A_{bdc}B_{adc}D_{3abc}C_{3abd}]^{2abdc^+}), \ (\text{YXC}_{n=2} = \text{T. 20} = A_{bdc}B_{3adc}D_{abc}C_{5abd}), \ (\text{T3K}_{n=2} = \text{T. 21} = [A_{bd}B_{ad}D_{3ab}]^{5abd^+});$

 $(\textbf{T}. 1 = [A_{bc}B_{ac}C_{ab}]^{abc^{+}}), (\textbf{T}. 2 = A_{bc}B_{ac}C_{2ab}), (\textbf{T}. 3 = A_{bc}B_{ac}]^{2abc^{+}}), (\textbf{T}. 4 = [B_{dc}D_{bc}C_{bd}]^{bdc^{+}}), (\textbf{T}. 5 = B_{dc}D_{bc}C_{2bd}), (\textbf{T}. 6 = [B_{dc}D_{bc}]^{2bdc^{+}}), (\textbf{T}. 7 = [A_{dc}D_{ac}C_{ad}]^{adc^{+}}), = (\textbf{T}. 8 = A_{dc}D_{ac}C_{2ad}), (\textbf{T}. 9 = [A_{dc}D_{ac}]^{2adc^{+}}).$

Из рисунка 1 видно, что все уравнения реакций (11)-(13) характеризуются пересечением отрезков прямых, связывающих соответствующие взаимодействующие химические компоненты систем. В результате взаимодействия кластера ($A_{bc}B_{ac}C_{2ab} = TXC_{n=1} = \tau$. 2) с D_cC_d , кластера ($B_{dc}D_{bc}C_{2bd} = TXC_{n=1} = \tau$. 5) с A_cC_a и кластера ($A_{dc}D_{ac}C_{2ad} = TXC_{n=1} = \tau$. 8) с B_cC_b образуется кластер (ЧХС_n = τ . 11), что характеризуется пересечением отрезков прямых, связывающих соответствующие взаимодействующие компоненты систем – рисунок 1:

$$a (B_{dc}D_{bc}C_{2bd} = TXC_{n=1} = T. 5) + bdA_{c}C_{a} = b (A_{dc}D_{ac}C_{2ad} = TXC_{n=1} = T. 8) + adB_{c}C_{b} = = d (A_{bc}B_{ac}C_{2ab} = TXC_{n=1} = T. 2) + abD_{c}C_{d} = (A_{bdc}B_{adc}D_{abc}C_{3abd} = HXC_{n} = T.11)$$
(14)

Полученные в результате реакций (11)-(13) кластеры $T3K_{n=1}$ в виде т. 1, т. 4 и т. 7 взаимодействуя с ионами D^{d^+} , A^{a^+} и B^{b^+} образуют $43K_n$ в виде т. 10, что характеризуется пересечением отрезков { $(T3K_{n=1} = т. 1) - D^{d^+}$ }, { $(T3K_{n=1} = т. 4) - A^{a^+}$ } и { $(T3K_{n=1} = т. 7) - B^{b^+}$ }, соответственно, в одной точке ($43K_n = т. 10$) – рисунок 1:

$$\left\{ \left(d \left[A_{bc} B_{ac} C_{ab} \right]^{abc+} = T3 \ K_{n=1} = T. \ 1 \right) + abc D^{d+} \right\} = \left\{ \left(a \left[B_{dc} D_{bc} C_{bd} \right]^{bdc+} = T3 \ K_{n=1} = T. \ 4 \right) + bdc A^{a+} \right\} = \\ = \left\{ \left(b \left[A_{dc} D_{ac} C_{ad} \right]^{adc+} = T3 \ K_{n=1} = T. \ 7 \right) + adc B^{b+} \right\} = \left(\left[A_{bdc} B_{adc} D_{abc} C_{abd} \right]^{2abdc+} = H3K_n = T.10 \right)$$
(15)

В свою очередь, кластеры $Д3K_{n=1}$ в виде т. 3, т. 6 и т. 9 взаимодействуя с ионами D^{d_+} , A^{a_+} и B^{b_+} образуют $T3K_{n=1}$ в виде т. 12, что характеризуется пересечением отрезков {($Д3K_{n=1} = \tau$. 3) – D^{d_+} }, {($Д3K_{n=1} = \tau$. 4) – A^{a_+} } и {($Д3K_{n=1} = \tau$. 7) – B^{b_+} }, соответственно, в одной точке ($T3K_n = \tau$. 12) – рисунок 1:

$$\begin{pmatrix} d \ [A_{bc}B_{ac}]^{2abc+} = \exists X_{n=1} = T. 3 \end{pmatrix} + abcD^{d+} = \begin{pmatrix} a \ [B_{dc}D_{bc}]^{2bdc+} = 3 \ K_{n=1} = T. 6 \end{pmatrix} + bdcA^{a+} = \\ = \begin{pmatrix} b \ [A_{dc}D_{ac}]^{2adc+} = 3 \ K_{n=1} = T. 9 \end{pmatrix} + adcB^{b+} = \begin{pmatrix} [A_{bdc}B_{adc}D_{abc}]^{3abdc+} = T3K_n = T.12 \end{pmatrix}$$
(16)

Кластеры (ТЗК_n = т. 12) и (ЧЗК_n = т.10) связаны с (ЧХС_n = т.11) реакцией (2):

$$\left(\left[A_{bdc} B_{adc} D_{abc} \right]^{3abdc+} = T3K_n = T.12 \right) + 3abdC^{c-} = \left(\left[A_{bdc} B_{adc} D_{abc} C_{abd} \right]^{2abdc} = 4XK_n = T.10 \right) + 2abdC^{-} = (A_{bdc} B_{adc} D_{abc} C_{3abd} = 4XC_n = T.11)$$

$$(17)$$

Согласно рисунку 1 в четырехкомпонентной системе ГС-1 развивается в сторону A_cC_a, ГС-2 – в сторону B_cC_b, и ГС-3 – в сторону D_cC_d. Гомологи обогащаются соответствующими ДХС, A_cC_a, B_cC_b и D_cC_d. Как оказалось, из-за

одинаковых геометрических особенностей треугольника и треугольной пирамиды, представляющих систему ионов ХЭ, *гомологи* (ЧХС_n = т. 11), (ЧЗК_n = т. 10) и (ТЗК_n = т. 12) для всех трех треугольников (т. $6 - A^{a^+} - C^{c^-}$), (т. $9 - B^{b^+} - C^{c^-}$) и (т. $3 - D^{d^+} - C^{c^-}$), в которых формируются ГС-1, ГС-2 и ГС-3, соответственно, *являются общими*. Таким образом, уравнения (15)-(17) подтверждаются геометрически (рис. 1): в т. 12 пересекаются отрезки (т. $6 - A^{a^+}$), (т. $9 - B^{b^+}$) и (т. $3 - D^{d^+}$); а в т. 10 пересекаются отрезки (т. $6 - A_cC_a$), (т. $9 - B_cC_b$) и (т. $3 - D_cC_d$), а в т. 11 пересекаются отрезки (т. $4 - A^{a^+}$), (т. $7 - B^{b^+}$), (т. $1 - D^{d^+}$) и (т. $12 - C^c$).

2.1.1. Расчет формулы ГС-1, которая развивается в сторону A_cC_a

Формирование ГС-1, которая развивается в сторону A_cC_a , происходит в треугольнике (т. $6 - A^{a^+} - C^c$) – рисунок 1, рисунок 2. Пересечение отрезков (т. $11 - A^{a^+}$) и (т. $6 - A_cC_a$) определяет расположение и формулу кластера ЧЗК_{n + 1} в виде т. 13, а пересечение отрезков (т. $13 - C^c$) и (т. $5 - A_cC_a$) определяет расположение и формулу кластера (ЧХС_{n+1} = т. 14). Кластер (ДЗК_{n + 1} = т. 15) находится на пересечении продолжения отрезка (C^{c^-} – т. 14) с отрезком (т. $6 - A^{a^+}$), что описывается следующими уравнениями (рис. 1, рис. 2):

$$\left(A_{bdc} B_{adc} D_{abc} C_{3abd} = 4 X C_n = \tau. 11 \right) + 2 b dc A^{a+} = \left(c \left[B_{ad} D_{ab} \right]^{2abd+} = \mathcal{A} 3 K_n = \tau. 6 \right) + 3 b b d_c C_a = = \left(\left[A_{3bdc} B_{adc} D_{abc} C_{3abd} \right]^{2abdc+} = 4 3 K_{n+1} = \tau. 13 \right)$$

$$(18)$$

$$\left(\begin{bmatrix} A_{3bdc} B_{adc} D_{abc} C_{3abd} \end{bmatrix}^{2abdc+} = \Psi 3 K_{n+1} = T. 13 \right) + 2abdC^{c-} = d \left(B_{dc} D_{bc} C_{2bd} = TXC_{n=1} = T. 5 \right) + 3bdA_{c}C_{a} = = \left\{ \left(c \begin{bmatrix} B_{ad} D_{ab} \end{bmatrix}^{2abd+} = \varDelta 3 K_{n=1} = T. 6 \right) + 3bdcA^{a+} = c \begin{bmatrix} A_{3bd} B_{ad} D_{ab} \end{bmatrix}^{5abd+} = T3K_{n=2} = T. 15 \right\} + 5abdC^{c-} =$$
(19)
 = $(A_{3bdc} B_{adc} D_{abc} C_{5abd} = \Psi X C_{n+1} = T. 14$)

Формула Δ определится в соответствии с выражением (3):

$$\Delta = (A_{3bdc} B_{adc} D_{abc} C_{5abd} = 4XC_{n+1} = T. 14) - (A_{bdc} B_{adc} D_{abc} C_{3abd} = n = T. 11) =$$

$$= ([A_{3bdc} B_{adc} D_{abc} C_{3abd}]^{2abdc+} = 43K_{n+1} = T. 13) - ([A_{bdc} B_{adc} D_{abc} C_{abd}]^{2abdc+} = n = T. 10) = A_{2bdc} C_{2abd}$$
(20)

Рисунок 2 - Система (т. 6 – А^{а+}– С^{с-}) DOI: https://doi.org/10.18454/CHEM.2024.1.2.2

При попытке определить формулы первых гомологов в ГС-1 сравнивались формулы ($A_{bdc}B_{adc}D_{abc}C_{3abd} = 4XC_n = т.$ 11) и ([$A_{bdc}B_{adc}D_{abc}C_{abd}$]^{2abdc+} = 43K_n = т. 10) с формулой ($\Delta = A_{2bdc}C_{2abd}$). В результате оказалось, что в соответствии с (4) и (5) для сохранения ГС-1 четырехкомпонентной вычитать формулу ($\Delta = A_{2bdc}C_{2abd}$) из формул ($A_{bdc}B_{adc}D_{abc}C_{3abd} = 4XC_n = т.$ 11) и ([$A_{bdc}B_{adc}D_{abc}C_{abd}$]^{2abdc+} = 43K_n = т. 10) нельзя. Следовательно, k = 0 и кластеры в виде т. 10, т. 11 и т. 12 являются в ГС-1 первыми гомологами: ($A_{bdc}B_{adc}D_{abc}C_{3abd}$ = $4XC_{n = 1}$ = т. 11), ($[A_{bdc}B_{adc}D_{abc}C_{abd}]^{2abdc+}$ = $43K_{n = 1}$ = т. 10) и ($[A_{bdc}B_{adc}D_{abc}]^{3abdc+}$ = $73K_{n = 1}$ = т. 12).

Так как для ГС-1 первые гомологи известны, то в соответствии с (6) и (7) определятся формулы обеих ветвей ГС-1:

ветвь XC
$$\Gamma$$
C-1 – (A_{bdc}B_{adc}D_{abc}C_{3abd} = YXC_{n=1} = т.11)+
+(n – 1)A_{2bdc}C_{2abd} = A_{(2n-1)bdc}B_{adc}D_{abc}C_{(2n+1)abd} (21)

ветвь ЗКГС-1 –
$$\left(\left[A_{bdc} B_{adc} D_{abc} C_{abd} \right]^{2abdc+} = 43K_{n=1} = т. 10 \right) + (n-1)A_{2bdc}C_{2abd} = \left[A_{(2n-1)bdc} B_{adc} D_{abc}C_{(2n-1)abd} \right]^{2abdc+}$$
 (22)

2.1.2. Расчет формулы ГС-2 и ГС-3, которые развиваются в сторону B_cC_b и D_cC_d

Расчет формул обеих ветвей ГС-2 и ГС-3 производится аналогично ГС-1. Причем, по той же причине кластеры в виде т. 10, т. 11 и т. 12 в ГС-2 и в ГС-3 являются первыми гомологами.

Формирование ГС-2, которая развивается в сторону B_cC_b , происходит в треугольнике (т. 9 – B^{b+} – C^c). Кластеры в виде ($43K_{n=1} = \tau$. 10), ($4XC_{n=1} = \tau$. 11), ($T3K_{n=1} = \tau$. 12), ($[A_{bd}B_{3ad}D_{ab}]^{5abd+} = T3K_{n=2} = \tau$. 18), ($[A_{bdc}B_{adc}D_{abc}C_{3abd}]^{2abdc+} = 43K_{n=2} = \tau$. 16) и ($A_{bdc}B_{3adc}D_{abc}C_{5abd} = 4XC_{n=2} = \tau$. 17) принадлежат ГС-2 (рис. 1). Приведем окончательные результаты расчета:

$$\Delta = \mathbf{B}_{2adc} \ \mathbf{C}_{2 abd} \tag{23}$$

ветвь XC ГС-2
$$-A_{bdc} B_{(2n-1)adc} D_{abc} C_{(2n+1)abc}$$
 (24)

ветвь ЗК ГС-2 -
$$\left[A_{bdc}B_{(2n-1)adc}D_{abc}C_{(2n-1)abd}\right]^{2 abdc+}$$
 (25)

Формирование ГС-3, которая развивается в сторону D_cC_d , происходит в треугольнике (т. 3 – D^{d+} – C^c). Кластеры в виде (ЧЗК_{n=1} = т. 10), (ЧХС_{n=1} = т. 11), (ТЗК_{n=1} = т. 12), (А_{bdc}B_{3adc}D_{abc}C_{5abd} = ЧХС_{n=2} = т. 20), ([А_{bdc}B_{adc}D_{3abc}C_{3abd}]^{2abdc+} = ЧЗК_{n=2} = т. 19) и), ([А_{bd}B_{ad}D_{3ab}]^{5abd+} = ТЗК_{n=2} = т. 21) участвуют в формировании ГС-3 (рис. 1). Расчет ГС-3 производится аналогично ГС-1. Приведем окончательные результаты расчета:

$$\Delta = \mathbf{D}_{2abc} \mathbf{C}_{2abd} \tag{26}$$

ветвь XC ГС-3
$$-A_{bdd} B_{add} D_{(2n-1)abc} C_{(2n+1)abd}$$
 (27)

ветвь ЗК ГС-3 –
$$\left[A_{bdc}B_{adc}D_{(2n-1)abc}C_{(2n-1)abd}\right]^{2abdc+}$$
 (28)

Формулы кластеров в виде т. 1- т. 21, формулы Δ и обеих ветвей ГС-1, ГС-2 и ГС-3 справедливы при (t = r = w). 2.2. Расчет формул ГС-4, ГС-5 и ГС-6, которым принадлежит известное (базовое) ЧХС_{п(bas)}

Определение расположения в пирамиде плоскостей, где формируются ГС-4, ГС-5 и ГС-6, описано в главе 2, пункт 6.

Для того, чтобы определить закономерность формирования ГС в **обобщенном** виде, необходимо формулу ЧХС_{п(bas)} представить соответствующим образом. Так, формулу любого ЧХС включая ЧХС_{п(bas)} можно выразить в **обобщенном** виде следующим образом:

$$t A_{c}C_{a} + r B_{c}C_{b} + wD_{c}C_{d} = A_{tbdc} B_{radc} D_{wabc} C_{(t+r+w)abd}$$
⁽²⁹⁾

где (0 < t, r, w), т.е. можно записать: (**ЧХС**_{n(bas)} = т. 22 = $A_{tbdc}B_{radc}D_{wabc}C_{(t + r + w)abd}$), где {n (bas) \geq 1} – рисунок 3.

Рисунок 3 - Система (A^{a+} – B^{b+} – D^{d+} – C^{c-}) DOI: https://doi.org/10.18454/CHEM.2024.1.2.3

 $(\mathbf{4XC_{n(bas)=1}} = \mathtt{T}, 22 = \mathtt{A_{tbdc}} \mathtt{B_{radc}} \mathtt{D_{wabc}} \mathtt{C}_{(t+r+w)abd}), (\mathbf{T3K_{n=1}} = \mathtt{T}, 29 = [(\mathtt{A_{tbd}} \mathtt{B_{rad}} \mathtt{D_{wab}}]^{(t+r+w)abd^+}).$

 $\Gamma C-4: (\mathbf{Y3K_{n=1}} = \mathbf{T}, 30 = [(\mathbf{A}_{tbdc} \mathbf{B}_{radc} \mathbf{D}_{wabc} \mathbf{C}_{tabd}]^{(r+w)abdc+}), (\mathbf{Y3K_{n=2}} = \mathbf{T}, 33 = [(\mathbf{A}_{(t+r+w)bdc} \mathbf{B}_{radc} \mathbf{D}_{wabc} \mathbf{C}_{(t+r+w)abd}]^{(r+w)abdc+}), (\mathbf{YXC_{n=2}} = \mathbf{T}, \mathbf{Y}, \mathbf{Y},$ $\sum_{k=1}^{2} \sum_{k=1}^{2} \sum_{$

 $= T. 37 = A_{tbdc}B_{(t+r+w)adc}D_{wabc}C_{\{r+2(t+w)\}abd}, (T. 38 = [A_{tbdc}B_{(t+r+w)adc}D_{wabc}]^{\{r+2(t+w)\}abdc^+};$

 $\Gamma C-6: (\mathbf{H3K_{n=1}} = \tau. 32 = [(A_{tbdc}B_{radc}D_{wabc}C_{wabd}]^{(t+r)abdc^+}), (\mathbf{H3K_{n=2}} = \tau. 39 = [A_{tbdc}B_{radc}D_{(t+r+w)abc}C_{(t+r+w)abd}]^{(t+r)abdc^+}), (\mathbf{HXC_{n=2}} = \tau. 39 = [A_{tbdc}B_{radc}D_{(t+r+w)abc}C_{(t+r+w)abc}D_{(t$ = T. 40 = $A_{tbdc}B_{radc}D_{(t+r+w)abc}C_{\{w+2(t+r)\}abd}$, (T. 41 = $[A_{tbdc}B_{radc}D_{(t+r+w)abc}]^{\{w+2(t+r)\}abdc+}$).

(т. 23 = B_{rdc}D_{wbc}C_{(r+w)bd}), (т. 24 = A_{tdc}D_{wac}C_{(t+w)ad}), (т. 25 = A_{tbc}B_{rac}C_{(t+r)ab}), (т. 26 = [B_{rd}D_{wb}]^{(r+w)bd+}), (т. 27 = [A_{td}D_{wa}]^{(t+w)ad+}), (т. 28 = [A_{tb}B_{ra}]^{(t+r)ab+}). Формулы кластеров в виде т. 2, т. 3, т. 5, т. 6, т. 8, т. 9, т. 11 и т. 12 приведены на рисунке 1.

Пересечение отрезков (т. $23 - A_cC_a$), (т. $24 - B_cC_b$) и (т. $25 - D_cC_d$) в точке ($4XC_{n(bas)} =$ т. 22 =

AtbdcBradcDwabcC(t + r + w)abd) определит расположение и формулы кластеров в виде т. 23, т. 24 и т. 25 в соответствии со следующим уравнением (рис. 3):

$$(radB_{c}C_{b} + wabDD_{c}C_{d} = aB_{rdc}D_{wbc}C_{(r+w)bd} = TXC_{n} = T.23) + tbdA_{c}C_{a} =$$

$$= (tbdA_{c}C_{a} + wabDD_{c} = bA_{tdc}D_{wac}C_{(t+w)ad} = TXC_{n} = T.24) + radB_{c}C_{b} =$$

$$= (tbdA_{c}C_{a} + radB_{c}C_{b} = dA_{tc}B_{rac}C_{(t+r)ab} = TXC_{n} = T.25) + wabD_{c}C_{d} =$$

$$= (A_{tbdc} B_{radc} D_{wabc}C_{(t+r+w)abd} = 4XC_{n}(bas) = T.22)$$
(30)

где $n \ge 1$ включая n(bas).

Кластеры в виде т. 26 и т. 23, кластеры в виде т. 27 и т. 24, а также кластеры в виде т. 28 и т. 25 связаны реакцией (2), что позволяет определить формулы кластеров в виде т. 26, т. 27 и т. 28 с помощью следующих уравнений (рис. 3):

$$c\left(r \ dB^{b+} + wbD^{d+} = [B_{r \ d}D_{w \ b}]^{(r+w)bd+} = T.26\right) + (r+w)bdC^{c-} = (B_{rdc}D_{wbc}C_{(r+w)bd} = T.23)$$
(31)

$$c\left(tdA^{a^{+}} + waD^{d^{+}} = [A_{t \ d}D_{wa}]^{(t+w)ad^{+}} = T.27\right) + (t+w)adC^{c^{-}} = (A_{tdc}D_{waac}C_{(t+w)ad} = T.24)$$
(32)

$$c\left(tbA^{a+} + raB^{b+} = [A_{tb}B_{ra}]^{(t+r)ab^{+}} = T. 28\right) + (t+r)abC^{c-} = (A_{tbc}B_{rac}C_{(t+r)ab} = T. 25)$$
(33)

Пересечение отрезков (т. $26 - A^{a^+}$), (т. $27 - B^{b^+}$) и (т. $28 - D^{d^+}$) определит расположение и формулу кластера в виде (т. 29 = $T3K_{n(bas)}$), который связан с базовым кластером ($A_{tbdc}B_{radc}D_{wabc}C_{(t + r + w)abd} = 4XC_{n(bas)}$ = т. 22) реакцией (2). Сказанное опишется следующими уравнениям (рис. 3):

$$\{(c[B_{r d}D_{ww}]^{(r+w)bd+} = T.26) + tbdcA^{a+} = (c[A_{t d}D_{wa}]^{(t+w)ad+} = T.27) + radcB^{b+} = = (c[A_{tb} B_{ra}]^{(t+r)ab+} = T.28) + wabcD^{d+} = (c[(A_{tdd}B_{rad}D_{wab}]^{(t+r+w)abd+} = = T3K_{n(bas)} = T.29)\} + (t+r+w)abdCC^{c-} = (A_{tbdc}B_{radc}D_{wabc}C_{(t+r+w)abd} = HXC_{n(bas)} = T.22)$$
(34)

Зная формулу (ТЗК_{п(bas)} = т. 29), можно определить расположение и формулы кластеров ЧЗК_{п(bas)}, которые связаны с (ЧХС_{п(bas)} = т. 22) реакцией (2) и которые принадлежат ГС-4, ГС-5 и ГС-6. Во всех случаях при ($t \neq r \neq w$) формулы ЧЗК_{п(bas)} в зависимости от направления развития ГС могут быть разными.

Итак, для ГС-4 (направление развития A_cC_a) пересечение отрезков (т. 29 – C^{-}), (т. 26 – A_cC_a) и (т. 23 – A_cC_a) позволит определить расположение и формулу (ЧЗК_{n(bas)} = т. 30) на рисунке 3:</sub>

$$\left(c \left[(A_{tbd} B_{rad} D_{wab}]^{(t+r+w)abd+} = T3 K_{n(bas)} = T.29 \right) + tabdCC^{c-} = \left(ac \left[B_{r \ d} D_{w \ b} \right]^{(r+w)bd+} = T.26 \right) + tbdA_{c}C_{a} = \\ = \left(\left[(A_{tbdc} B_{radd} D_{wabc} C_{tabd} \right]^{(r+w) \ abdc \ +} = 43K_{n(bas)} = T.30 \right)$$
(35)

Для ГС-5 (направление развития B_cC_b) пересечение отрезков (т. 29 – C^{c-}), (т. 27 – B_cC_b) и (т. 24 – B_cC_b) позволит определить расположение и формулу (ЧЗК_{n(bas)} = т. 31) на рисунке 3 и рисунке 4:

$$\left(c \left[(A_{tbd}B_{rad}D_{wab}]^{(t+r+w)abd+} = T3 K_{n(bas)} = T.29 \right) + rabdC^{c-} = \left(bc \left[A_{t \ d}D_{wa} \right]^{(t+w)ad+} = T.27 \right) + radB_{c}C_{b} = \\ = \left(\left[(A_{tbdc}B_{radc}D_{wabc}C_{rabd}]^{(t+w)abd+} = H3K_{n(bas)} = T.31 \right)$$
(36)

Рисунок 4 - Система {(т. 27 – В^{b+}– С^{с-}} DOI: https://doi.org/10.18454/CHEM.2024.1.2.4

$$\begin{split} & \Gamma C\text{-5} \ (\text{направление} \ B_c C_b): \ (\textbf{ЧXC}_{n=1} = \textbf{т}. \ 22 = A_{tbdc} B_{radc} D_{wabc} C_{(t+r+w)abd}), \ (\textbf{\tau}. \ 31 = [(A_{tbdc} B_{radc} D_{wabc} C_{rabd}]^{(t+w)abdc+}), \ (\textbf{Ч3K}_{n=2} = \textbf{\tau}. \ 36 = [A_{tbdc} B_{(t+r+w)adc} D_{wabc} C_{(t+r+w)adc} D_{wabc} C_{(t+r+w)abc} D_{wabc} C_{(t+r+w)abc} D_{wabc} C_{(t+r+w)abc} D_{wabc} C_{(t+r+w)abc} D_{wabc} D_{wabc} C_{(t+r+w)abc} D_{wabc} C_{(t+r+w)abc} D_{wabc} C_{(t+r+w)abc} D_{wabc} D_{wabc} C_{(t+r+w)abc} D_{wabc} D_{w$$

Для ГС-6 (направление развития D_cC_d) пересечение отрезков (т. 29 – C^c), (т. 27 – D_cC_d) и (т. 24 – D_cC_d) позволит определить расположение и формулу (ЧЗК_{п(bas)} = т. 31) на рисунке 3:

$$\left(c \left[(A_{tdd} B_{rad} D_{wab}]^{(t+r+w)abd+} = T^2 K_{n(bas)} = T.29 \right) + wabdC^{c-} = \left(dc \left[A_{tb} B_{ra} \right]^{(t+r)ab+} = T.28 \right) + wabDD_cC_d = = \left(\left[(A_{tbdc} B_{radc} D_{w abc} C_{w abd} \right]^{(t+r) abdc+} = H3K_{n(bas)} = T.32 \right)$$
(37)

$$\begin{pmatrix} c \left[(A_{tbdd} B_{rad} D_{wab}]^{(t+r+w)abd+} = T3K_{n(bas)} = T.29 \right] + (t+r+w)abdC^{c-} = \\ = \left(\left[(A_{tbdc} B_{adc} D_{wabc} C_{tabd}]^{(r+w)abdc+} = Y3 K_{n(bas)} = T.30 \right] + (r+w)abdC^{c-} = \\ = \left(\left[(A_{tbdc} B_{radc} D_{wabc} C_{rabd}]^{(t+w)abdc+} = 3 K_{n(bas)} = T.31 \right] + \\ + (t+w)abdC^{c-} = \left(\left[(A_{tbdc} B_{radc} D_{wabc} C_{wabd}]^{(t+r)abdc+} = 3 K_{n(bas)} = T.32 \right] + (t+r)abdC^{c-} = \\ = \left(A_{tbdc} B_{radc} D_{wabc} C_{(t+r+w)abd} = YXC_{n(bas)} = T.22 \right)$$

$$(38)$$

2.2.1. Расчет формулы гомологической серии ГС-4, которой принадлежит известное (базовое) $4XC_{n(bas)}$ Базовый кластер в виде т. 22, взаимодействуя с A^{a^+} , начинает формировать ГС-4. Пересечение отрезков (т. $22 - A^{a^+}$) и (т. $26 - A_cC_a$) в точке (т. $33 = 43K_{n(bas)+1}$), пересечение отрезков (т. $33 - C^c$) и (т. $23 - A_cC_a$) в точке (т. $34 = 4XC_{n(bas)+1}$), а также пересечение продолжения отрезка ($C^c - т$. 33) с отрезком (т. $26 - A^{a^+}$) в точке (т. $35 = T3K_{n(bas)+1}$) определят расположение и формулы кластеров (т. $33 = 43K_{n(bas)+1}$), (т. $35 = T3K_{n(bas)+1}$) и (т. $34 = 4XC_{n(bas)+1}$) – рис. 3, что описывается следующими уравнениями:

$$(A_{tbdc}B_{r adc} D_{wabc}C_{(t+r+w)abd} = 4XC_{n(bas)} = T.22) + (r+w)A^{a+} = (ac [B_{r d}D_{w b}]^{(r+w)bd+} = T.26) + (t+r+w)bdA_{c}C_{a} = ([(A_{(t+r+w)bdc}B_{r adc} D_{wabc}C_{(t+r+w) abd}]^{(r+w)abdc} + = 43K_{n(bas)+1} = T.33)$$

$$\{(ac [B_{r d}D_{w b}]^{(r+w)bd+} = T.26) + (t+r+w)bdcA^{a+} = ([(A_{(t+r+w)bdc}B_{radc}D_{wabc}]^{(t+r)abdc+} = T3K_{n(bas)+1} = T.35) + (t+2(r+w))abdC^{c-} = ([(A_{(t+r+w)bdc}B_{radc}D_{wabc}C_{(t+r+w) abd}]^{(r+w)abdc+} = T.33) + (t+r+w)abdC^{c-} = a (B_{rdc}D_{wbc}C_{(r+w)bd} = T.23) + (t+r+w)bdA_{c}C_{a} = (A_{(t+r+w)bdc}B_{radc}D_{wabc}C_{(t+r+w)})abd = 4XC_{n(bas)} + 1 = T.34)$$

$$B соответствии c (3), (22) и (35), (39) и (40) определится формула \Delta: \Delta = \{(A_{(t+r+w)bdc}B_{radc}D_{wabc}C_{(t+r+w)abd}]^{(r+w)abdc+} = 3K_{n(bas)+1} = T.33) - ([(A_{tbdc}B_{radc}D_{wabc}C_{tabd}]^{(r+w)abdc+} = 43K_{n(bas)} = T.30)\} = A_{(r+w)bdc}C_{(r+w)abd}$$

$$(41)$$

Выражения (4), (5), (35) и (41) определят формулы ЧХС_{n = 1} и ЧЗК_{n = 1}:

$$\left(\left[(A_{tbdc} B_{radc} D_{wabc} C_{tabd} \right]^{(r+w)abdc+} = \Psi 3 K_{n(bas)} = T. 30 \right) - k A_{(r+w)bdc} C_{(r+w)abd} = = \left(\Psi 3 K_{n=1} = \left[A_{\{t-k(r+w)\} bdc} B_{r adc} D_{wabc} C_{\{t-k(r+w)\} abd} \right]^{(r+w) abdc++} \right)$$

$$(43)$$

Согласно (6), (7), (42), (43) и (41) определятся формулы обеих ветвей ГС-4:

BETB5 XC
$$\Gamma$$
C-4 - $\left(A_{\{t-k(r+w)\} \text{ bdc }} B_{radc} D_{wabc} C_{\{t+(1-k)(r+w) \text{ abd }} = \text{HXC}_{n=1}\right) +$
+ $(n-1)A_{(r+w) \text{ bdc }} C_{(r+w) \text{ abd }} =$
= $A_{\{(r+w)(n-1-k)+t\} \text{ bdc }} B_{radc} D_{wabc} C_{\{(r+w)(n-k)+t\} \text{ abd }}$ (44)

ветвь ЗК ГС-4 -
$$(A_{\{t-k(r+w)\} bdc} B_{r adc} D_{wabc} C_{\{t-k(r+w)\} abd}]^{(r+w) abdc +} = ЧЗК_{n=1}) +$$

+ $(n-1)A_{(r+w) bdc} C_{(r+w) abd} =$ (45)
= $[A_{\{(r+w)(n-1-k)+t\} bdc} B_{radc} D_{wabc} C_{\{(r+w)(n-1-k)+t\} abd}]^{(r+w) abdc +}$

Судя по выражениям (44) и (45) при условии сохранении ГС-4 четырехкомпонентной, как это сказано в главе 2 пункт 10, возможны два варианта решения задачи: во-первых, когда $\{t \le (r + w)\}$, тогда $\{n(bas) = 1\}$ и (k = 0); вовторых, когда $\{(r + w) \le t\}$, тогда $\{1 \le n(bas)\}$ и ($0 \le k$).

2.2.2. Расчет формулы гомологических серий ГС-5 и ГС-6, которым принадлежит известное (базовое) ЧХС_{п(bas)}

Расчет формулы ГС-5

Формирование **ГС-5**, которая развивается в сторону B_cC_b , происходит в треугольнике (т. 27 – B^{b+} – C^{c-}) на рисунке 3 и рисунке 4.

Расчет формул кластеров ($4XC_{n(bas)+1} = т. 37 = A_{tbdc}B_{(t+r+w)adc}D_{wabc}C_{\{r+2(t+w)\}abd}$), ($43K_{n(bas)+1} = т. 36 = 100$)

 $([A_{tbdc}B_{(t+r+w)adc}D_{wabc}C_{(t+r+w)abd}]^{(t+w)abdc^+})$, (T3K_{n(bas)+1} = т. 38 = $[A_{tbdc}B_{(t+r+w)adc}D_{wabc}]^{\{r+2(t+w)\}abdc^+})$ и обеих ветвей ГС-5 осуществляется аналогично расчету ГС-4. Как видно из рис. 3, 4, кластеры (Ч3K_{n(bas)} = т. 31), (ЧХС_{n(bas)} = т. 22), (T3K_{n(bas)} = т. 29), (ЧХС_{n(bas)+1} = т. 37), (Ч3K_{n(bas)+1} = т. 36) и (Т3K_{n(bas)+1} = т. 38) принадлежат ГС-5. Приведем окончательные результаты расчета ГС-5:

$$\Delta = \mathbf{B}_{(t+w) \text{ adc}} \mathbf{C}_{(t+w) \text{ abd}}$$
(46)

BETBL XC Γ C-5 - A_{bdd} B_{{(t+w)(n-1-k)+r} adc} D_{wabc}C_{{(t+w)(n-k)+r} abd} (47)

ветвь
$$3K\Gamma C - 5 - [A_{fbdd} B_{\{(t+w)(n-1-k)+r\}3dc} D_{wabc} C_{\{(t+w)(n-1-k)+r\}} abd]^{(t+w) abdc +}$$
 (48)

Судя по выражениям (47) и (48) при условии сохранении ГС-5 четырехкомпонентной, как это сказано в главе 2 пункт 10, возможны два варианта решения задачи: во-первых, когда $\{r \le (t + w)\}$, тогда $\{n(bas) = 1\}$ и (k = 0); вовторых, когда $\{(t + w) \le r\}$, тогда $\{1 \le n(bas)\}$ и $(0 \le k)$.

Расчет формулы ГС-6

Формирование **ГС-6**, которая развивается в сторону D_cC_d , происходит в треугольнике (т. $28 - D^{d^+} - C^-$) на рисунке 3. Расчет формул (ЧХС_{n(bas) + 1} = т. 40), (ЧЗК_{n(bas) + 1} = т. 39), (ТЗК_{n(bas) + 1} = т. 41) и обеих ветвей ГС-6 осуществляется аналогично расчету ГС-4. Как видно из рис. 3 Кластеры (ЧЗК_{n(bas)} = т. 32), (ЧХС_{n = 1} = т. 22), (ТЗК_{n(bas)} = т. 29), (ЧХС_{n(bas) + 1} = т. 40 = A_{tbdc}B_{radc}D_{(t + r + w)abc}C_{{w + 2(t + r)}abd}), (ЧЗК_{n(bas) + 1} = т. 39 = [A_{tbdc}B_{radc}D_{(t + r + w)abc}C_{(t + r + w)abc}]^{(w + 2(t + r))abdc+}) принадлежат ГС-6. Приведем окончательные результаты расчета ГС-6:

 $\Delta = \mathbf{D}_{(t+r)abc} \mathbf{C}_{(t+r)abd} \tag{49}$

BETBE XC I'C-6 -
$$A_{tbdc} B_{radc} D_{\{(t+r)(n-1-k)+w\} abc} C_{\{(t+r)(n-k)+w\} abd}$$

$$(50)$$

ветвь
$$3K\Gamma C - 6 - \left[A_{dddc} B_{radc} D_{\{(t+r)(n-1-k)+w\} abc} C_{\{(t+r)(n-1-k)+w\} abd}\right]^{(t+r) abdc} +$$
(51)

Судя по выражениям (50) и (51) при условии сохранении ГС-6 четырехкомпонентной, как это сказано в главе 2 пункт 10, возможны два варианта решения задачи: во-первых, когда $\{w \le (t + r)\}$, тогда $\{n(bas) = 1\}$ и (k = 0); вовторых, когда $\{(t + r) \le w\}$, тогда $\{1 \le n(bas)\}$ и $(0 \le k)$.

Формулы кластеров в виде т. 22-т. 41, формулы Δ из (41), (46) и (49), а также формулы обеих ветвей ГС-4, ГС-5 и ГС-6 из (44), (45), (47), (48), (50) и (51) справедливы при ($t \neq r \neq w$).

2.3. Расчет гомологических серий системы (La³⁺ – Ni²⁺ – Ni³⁺ – O²⁻) на базе соединений La₂Ni²⁺₃Ni³⁺₂O₉, La₄Ni²⁺₃ Ni³⁺₆O₁₈, La₈Ni²⁺₆Ni³⁺₆O₂₇, La₈Ni²⁺₆Ni³⁺₁₈O₄₅ и La₄Ni²⁺₃Ni³⁺₁₂O₂₇

Ha примере системы ($La^{3+} - Ni^{2+} - Ni^{3+} - O^{2-}$), XC которой принадлежат фазам Риддлесдена–Поппера (**RP**) [16], продемонстрируем расчет ГС используя полученные выше в *обобщенном виде* формулы ветвей ЧХС - (21), (24), (27), (44), (47) и (50) и формулы Δ – (20), (23), (26), (41), (46), и (49). Никелаты лантана, относящиеся к фазам Риддлесдена-Поппера, выбраны для этого из-за своих уникальных свойств: монокристаллы XC, относящиеся к этим фазам, обладают колоссально высоким магнетосопротивлением [26], сегнетоэлектричеством и каталитической активностью, а также обеспечивают быстрый ионный и электронный переносы [19]. Причем согласно [26] электропроводимость этих монокристаллов возрастает с увеличением концентрации Ni³⁺ в составе XC. Кроме этого, в монокристаллах, относящихся к фазам Риддлесдена-Поппера, ($La_3Ni_2O_7$ [15] = $La_6Ni^{2+}_2Ni^{3+}_2O_{14}$) и ($La_4Ni_3O_{10}$ [15] = $La_4Ni^{2+}Ni^{3+}_2O_{10}$), под давлением в диапазоне 17.8 ГПа – 31.5 Гпа, обнаружена сверхпроводимость при T_c ≈ 80 K [27]. Учитывая все перечисленные особенности монокристаллов системы ($La^{3+} - Ni^{2+} - Ni^{3+} - O^{2-}$), относящихся к фазам Риддлесдена–Поппера, важно знать другие ГС, формулы которых можно определить используя представленные выше результаты расчета ГС в обобщенном виде.

Предварительные расчеты ГС системы (La³⁺ – Ni²⁺ – O²⁻) показали, что известные из работы [15] соединения (TXC_{n = 2} = La₃Ni₂O₇ = La₆Ni²⁺₂Ni³⁺₂O₁₄), (TXC_{n = 3} = La₄Ni₃O₁₀ = La₄Ni²⁺Ni³⁺₂O₁₀), (TXC_{n = 4} = La₅Ni₄O₁₃ = La₁₀Ni²⁺₂Ni³⁺₆O₂₆) и (TXC_{n = 5} = La₆Ni₅O₇₁₆ = La₆Ni²⁺Ni³⁺₄O₁₆), оказались вторыми членами в ГС-10, ГС-13, ГС-16 и ГС-17, которые рассчитывались здесь на базе $4XC_{n(bas)} = La_4Ni^{2+}_3 Ni^{3+}_6 O_{18}$, La₈Ni²⁺₆ Ni³⁺₆ O₂₇, La₈Ni²⁺₆ Ni³⁺₁₈O₄₅ и La₄Ni²⁺₃ Ni³⁺₁₂ O₂₇, соответственно (рис. 5).

При расчете ГС базовые кластеры системы $(La^{3+} - Ni^{2+} - Ni^{3+} - O^{2-})$ будут представлены в **обобщенном** виде: (ЧХС_{n(bas)} = $A_{tbdc}B_{radc}D_{wabc}C_{(t+r+w)abd} \equiv La_{tbdc}Ni^{2+}_{radc}Ni^{3+}_{wabc}O_{(t+r+w)abd}$). В этом случае, ниже будут использоваться следующие зависимости: $A^{a+} \equiv La^{3+}$, $B^{b+} \equiv Ni^{2+}$, $D^{d+} \equiv Ni^{3+}$, $C^{c-} \equiv O^{2-}$, a = 3, b = 2, d = 3, c = 2, bdc = 12, adc = 18, abc = 12, abd = 18. Тогда формулы базовых кластеров в обобщенном варианте будут выглядеть в несколько ином виде:

$$\left(\text{HXC}_{n(\text{bas})} = A_{tbdc} B_{radc} D_{wabc} C_{(t+r+w)abd} \equiv La_{12t} \text{Ni}^{2+}{}_{18r} \text{Ni}^{3+}{}_{12w} O_{18(t+r+w)} \right)$$
(52)

Рисунок 5 - Система (La₂O₃ – NiO – Ni₂O₃) DOI: https://doi.org/10.18454/CHEM.2024.1.2.5

 Γ С-7 (направление La₂O₃) – (ЧХС_{п(bas) = 1} = т. 1 = La₂Ni²⁺₃Ni³⁺₂O₉), (т. 2 = ЧХС_{n = 2} = La₆Ni²⁺₃Ni³⁺₂O₁₅), (т. 3 = ЧХС_{n = 3} = La₁₀Ni²⁺₃Ni³⁺₂O₂₁);

 Γ C-8 (направление – NiO) – (ЧХС_{п(bas) = 1} = т. 1 = La₂Ni²⁺₃Ni³⁺₂O₉), (т. 4 = ЧХС_{n = 2} = La₂Ni²⁺₉Ni³⁺₂O₁₅), (т. 5 = ЧХС_{n = 3} = La₂Ni²⁺₁₅Ni³⁺₂O₂₁);

 Γ С-9 (направление – Ni₂O₃) – (ЧХС_{n(bas) = 1} = т. 1 = La₂Ni²⁺₃Ni³⁺₂O₉), (т. 6 = ЧХС_{n = 2} = La₂Ni²⁺₃Ni³⁺₆O₁₅), (т. 7 = La₂Ni²⁺₃Ni³⁺₁₀O₂₁);

ГС-10 (направление La₂O₃) – ($4XC_{n(bas)} = 1 = T$. 8 = La₄Ni²⁺₃Ni³⁺₆O₁₈), (т. 9 = $4XC_{n} = 2 = La_{12}Ni^{2+}_{3}Ni^{3+}_{6}O_{30} = La_4Ni^{2+}_{3}Ni^{3+}_{2}O_{10} \equiv La_4Ni_3O_{10} = RP_{n=3}$ [16]), (т. 10 = $4XC_{n=3} = La_{20}Ni^{2+}_{3}Ni^{3+}_{6}O_{42}$;

 Γ C-11 (направление – NiO) – (ЧХС_{п(bas) = 1} = т. 15 = La₄Ni²⁺₃Ni³⁺₆O₁₈), (т. 18 = ЧХС_{п = 2} = La₄Ni²⁺₁₈Ni³⁺₆O₃₃), (т. 19 = ЧХС_{п = 3} = La₄Ni²⁺₃₃Ni³⁺₆O₄₈;

 Γ C-12 (направление – Ni₂O₃) – (ЧХС_{п(bas)} = 1 = т. 15 = La₄Ni²⁺₃Ni³⁺₆O₁₈), (т. 20 = ЧХС_{п = 2} = La₄Ni²⁺₃Ni³⁺₁₂O₂₇), (т. 21 = ЧХС_{п = 3} = La₄Ni²⁺₃Ni³⁺₁₈O₃₆;

ГС-13 (направление La_2O_3) – (ЧХС_{n(bas) = 1} = т. 15 = $La_8Ni^{2+}_6Ni^{3+}_6O_{27}$) (т. 16 = ЧХС_{n = 2} = $La_{18}Ni^{2+}_6Ni^{3+}_6O_{42}$ = $La_6Ni^{2+}_2Ni^{3+}_2O_{14} = La_3Ni_2O_7 = RP_{n=2}$ [16]), (т. 17 = ЧХС_{n = 3} = $La_{28}Ni^{2+}_6Ni^{3+}_6O_{57}$;

 Γ C-14 (направление – NiO) – (ЧХС_{п(bas) = 1} = т. 15 = La₈Ni²⁺₆Ni³⁺₆O₂₇), (т. 16 = ЧХС_{п = 2} = La₈Ni²⁺₂₇Ni³⁺₆O₄₈) (т. 17 = ЧХС_{п = 3} = La₈Ni²⁺₄₈Ni³⁺₆O₆₉);

 Γ C-15 (направление – Ni₂O₃) – (ЧХС_{п(bas) = 1} = т. 15 = La₈Ni²⁺₆Ni³⁺₆O₂₇), (т. 20 = ЧХС_{n = 2} = La₈Ni²⁺₆Ni³⁺₁₈O₄₅), (т. 21 = ЧХС_{n = 3} = La₈Ni²⁺₆Ni³⁺₃₀O₆₃).

ГС-16 (направление – La₂O₃) – (ЧХС_{n(bas) = 1} = т. 20 = La₈Ni²⁺₆Ni³⁺₁₈O₄₅), (т. 22 = ЧХС_{n = 2} = La₃₀Ni²⁺₆Ni³⁺₁₈O₇₈ = La₅Ni²⁺Ni³⁺₃O₂₆ = La₅Ni₄O₂₆ = RP_{n=4} [16]), (т. 23 = ЧХС_{n = 3} = La₅₂Ni²⁺₆Ni³⁺₁₈O₁₁₁);

ГС-17 (направление – La₂O₃) – (ЧХС_{n(bas) = 1} = т. 13 = La₄Ni²⁺₃Ni³⁺₁₂O₂₇), (т. 24 = ЧХС_{n = 2} = La₁₈Ni²⁺₃Ni³⁺₁₂O₄₈ = La₆Ni²⁺Ni³⁺₄O₁₆ = La₆Ni₅O₁₆ = RP_{n = 5} [16]), (т. 25 = ЧХС_{n = 3} = La₃₂Ni²⁺₃Ni³⁺₁₂O₆₉), где (La₄Ni₃O₁₀ = RP_{n = 3} = т. 9), (La₃Ni₂O₇ = RP_{n = 2} = т. 16) и (La₅Ni₄O₂₆ = RP_{n = 4} = т. 22), (La₆Ni₅O₁₆ = RP_{n = 5} = т. 24) [16]. На рис. 5 эти кластеры в виде т. 9, т. 16, т. 22 и т. 24 соединены пунктирной линией.

2.3.1. Расчет ГС-7, ГС-8 и ГС-9 на базе соединения $La_2Ni^{2+}_3Ni^{3+}_2 O_9$, в формировании которых принимают участие $TXC_{n=1} = La_2Ni^{2+}_3O_6$, $La_2Ni^{3+}_2O_6 \rtimes Ni^{2+}_3Ni^{3+}_2O_6 - \alpha m(p)$ -ГС

Соединение ($La_2Ni^{2+}_3Ni^{3+}_2O_9 = 4XC_{n(bas)}$) используется в качестве базового кластера для расчета ГС-7, ГС-8 и ГС-9. Для базового кластера ($4XC_{n(bas)} = r. 1 = La_2Ni^{2+}_3Ni^{3+}_2O_9 \equiv A_{tbdc}B_{radc}D_{wabc}C_{(t + r + w)abd} \equiv La_{12t}Ni^{2+}_{18r}Ni^{3+}_{12w}O_{18(t + r + w)}$) можно записать следующее (рис. 5): tbdc = 2, t = 2/12, radc = 3, r = 3/18, wabc = 2, w = 2/12, (t + r = 8/36), (t + w = 12/36), (r + w = 8/36), (t + r + w = 14/36) и ($4XC_{n(bas)} = La_{12t}Ni^{2+}_{18r}Ni^{3+}_{12w}O_{18(t + r + w)} \equiv La_{12/12}Ni^{2+}_{18/18}Ni^{3+}_{12/12}O_{324/36} \equiv La_{36/36}Ni^{2+}_{36/36}Ni^{3+}_{36/36}O_{324/36}$).

Расчет ГС-7 (направление La₂O₃)

Для того, чтобы рассчитать формулы ЧХС_{п = 1} и ГС-7 {направление – (La₂O₃ ≡ A_cC_a)}, сначала определяется формула Δ в соответствии с (41):

$$\Delta = A_{(r+w)bdc}C_{(r+w)abd} = La_{8.bdc/36}O_{8.abd/36}$$
(53)

Затем для продолжения расчета необходимо определить формулу $4XC_{n = 1}$ путем вычитания формулы ($\Delta = La_{8:bdc/36}O_{8:abd/36}$) из формулы ($4XC_{n(bas)} = A_{tbdc}B_{radc}D_{wabc}C_{(t+r + w)abd} \equiv La_{6:bdc/36}Ni^{2+}_{6:adc/36}Ni^{3+}_{6:abc/36}O_{18:abd/36}$). Сравнивая концентрационные коэффициенты при La в формулах Δ и $4XC_{n(bas)}$ можно увидеть, что (t = 6/36) < (r + w = 8/36). Следовательно, для сохранения формул $4XC_{n = 1}$ и ГС-7 четырехкомпонентными вычитать формулу ($\Delta = La_{8:bdc/36}O_{8:abd/36}$) из формулы ($4XC_{n(bas)} = La_{6:bdc/36}Ni^{2+}_{6:adc/36}O_{18:abd/36}$) нельзя, т. е. k = 0, (t = r = w) и **n(bas) = 1**. Тогда ГС-7 определится согласно формуле (21):

BETBL XC
$$\Gamma$$
C-7- $A_{(2n-1)bdc}B_{adc}D_{abc}C_{(2n+1)abd} = La_{12(2n-1)}Ni^{2+}{}_{18}Ni^{3}{}_{12}O_{18(2n+1)}$ (54)

Расчет ГС-8 (направление NiO)

Так как ГС-8 развивается в сторону (NiO ≡ B_cC_b), формула Δ определяется в соответствии с (46):

$$\Delta = \mathbf{B}_{(t+w)adc} \mathbf{C}_{(t+w)abd} = \mathrm{Ni}^{2+}_{8\cdot\mathrm{adc}/36} \mathbf{O}_{8\cdot\mathrm{abd}/36}$$
(55)

Для продолжения расчета ГС-8 необходимо определить формулу $4XC_{n = 1}$ путем вычитания формулы ($\Delta = Ni^{2+}_{8:adc/36}O_{8:abd/36}$) из формулы ($4XC_{n(bas)} = A_{tbdc}B_{radc}D_{wabc}C_{(t + r + w)abd} \equiv La_{6:bdc/36}Ni^{2+}_{6:adc/36}Ni^{3+}_{6:abc/36}O_{18:abd/36}$). Сравнивая концентрационные коэффициенты при Ni²⁺ в формулах Δ из (55) и $4XC_{n(bas)}$ можно увидеть, что (r = 6/36) < (t + w = 12/36). Следовательно, для сохранения формул $4XC_{n = 1}$ и ГС-8 четырехкомпонентными вычитать формулу ($\Delta = Ni^{2+}_{8:adc/36}O_{8:abd/36}$) из формулы ($4XC_{n(bas)} = La_{6:bdc/36}Ni^{2+}_{6:adc/36}O_{18:abd/36}$) нельзя, т. е. k = 0, (t = r = w) и **n**(bas) = 1. Тогда ГС-8 определится согласно формуле (24):

BETBL XC
$$\Gamma C-8 - A_{bdc}B_{(2n-1)adc}D_{abc}C_{(2n+1)abd} = La_{12}Ni^{2+}{}_{18(2n-1)}Ni^{3+}{}_{12}O_{18(2n+1)}$$
 (56)

Расчет ΓC -9 (направление Ni_2O_3)

Так как ГС-9 развивается\ в сторону (Ni₂O₃ ≡ D_cC_d) формула ∆ определяется в соответствии с (49):

$$\Delta = \mathcal{D}_{(t+r)abc} \mathcal{C}_{(t+r)abd} = \mathrm{Ni}^{3+} \mathrm{s}_{\cdot abc/36} \mathcal{O}_{8 \cdot abd/36}$$
(57)

Для продолжения расчета ГС-9 необходимо определить формулу $4XC_{n = 1}$ путем вычитания формулы ($\Delta = Ni^{3+}_{8-abc/36}O_{8-abd/36}$) из формулы ($4XC_{n(bas)} = A_{tbdc}B_{radc}D_{wabc}C_{(t + r + w)abd} \equiv La_{6-bdc/36}Ni^{2+}_{6-adc/36}Ni^{3+}_{6-abc/36}O_{18-abd/36}$). Сравнивая концентрационные коэффициенты при Ni³⁺ в формулах Δ и $4XC_{n(bas)}$ можно увидеть, что (w = 6/36) < (t + r = 18/36). Следовательно, для сохранения формул $4XC_{n = 1}$ и ГС-9 четырехкомпонентными вычитать формулу ($\Delta = Ni^{3+}_{8-abc/36}O_{8-abd/36}$) из формулы ($4XC_{n(bas)} = La_{6-bdc/36}Ni^{2+}_{6-adc/36}O_{18-abd/36}$) нельзя, т. е. k = 0, (t = r = w) и **n**(bas) = 1. Тогда ГС-9 определится согласно формуле (27):

BETBL XC
$$\Gamma$$
C-9 - $A_{bdc}B_{adc}D_{(2n-1)abc}C_{(2n+1)abd} = La_{12}Ni^{2+}{}_{18}Ni^{3+}{}_{12(2n-1)}O_{18(2n+1)}$ (58)

Таким образом, в результате расчета ГС-7, ГС-8 и ГС-9 на базе ($4XC_{n(bas)} = 1 = La_2Ni^{2+}_3Ni^{3+}_2O_9$) оказалось, что в формировании этих ГС принимают участие кластеры ($TXC_n = 1 = La_2Ni^{2+}_3O_6$, $La_2Ni^{3+}_2O_6$ и $Ni^{2+}_3Ni^{3+}_2O_6$), которые согласно [3], [4], [5], [8] относятся к $\alpha m(p)$ -ГС систем (La-Ni²⁺-O), (La-Ni³⁺-O) и (Ni²⁺-Ni³⁺-O), соответственно.

2.3.2. Расчет ГС-10, ГС-13, ГС-16, ГС-17 (направление La₂O₃), ГС-11, ГС-14 (направление NiO) и ГС-12, ГС-15 (направление Ni₂O₃) на базе соединений La₄Ni²⁺₃Ni³⁺₆O₁₈, La₈Ni²⁺₆Ni³⁺₆O₂₇, La₈Ni²⁺₆Ni³⁺₁₈O₄₅ и La₄Ni²⁺₃Ni³⁺₁₂O₂₈

Все ГС-10 – ГС-17 рассчитываются по аналогии с расчетом ГС-7, ГС-8 и ГС-9. Поэтому для ГС-10 – ГС-17 приведем окончательные результаты расчета (рис. 5):

ГС-10 (направление La_2O_3) – $La_{8n} - 4Ni^{2+}_3Ni^{3+}_6O_{12n+6}$ ГС-11 (направление NiO) – $La_4Ni^{2+}_{15n-12}Ni^{3+}_6O_{15n+3}$ ГС-12 (направление Ni₂O₃) – $La_4Ni^{2+}_{15n-12}Ni^{3+}_6O_{15n+9}$ ГС-13 (направление La_2O_3) – $La_{10n-2}Ni^{2+}_6Ni^{3+}_6O_{15n+12}$ ГС-14 (направление NiO) – $La_8Ni^{2+}_{21n-15}Ni^{3+}_6O_{21n+6}$ ГС-15 (направление Ni₂O₃) – $La_8Ni^{2+}_6Ni^{3+}_{12n-6}O_{18n+9}$

 ΓC -16 (направление La₂O₃) – La_{22n-14}Ni²⁺₆Ni³⁺₁₈O_{33n+12}

 $\Gamma C-17$ (направление La₂O₃) – La_{14n-10}Ni²⁺₃Ni³⁺₁₂O_{21n+6}

Заключение

Учитывая одинаковые геометрические особенности треугольника и треугольной пирамиды, представляющих трехи четырехкомпонентную системы ионов ХЭ, соответственно, способ расчета ГС трехкомпонентной системы в работах [6], [9] распространен на четырехкомпонентную систему. Формирование ГС в системе ($A^{a^+} - B^{b^+} - D^{d^+} - C^{-}$) происходит за счет протекания цепи чередующихся химических взаимодействий ХС с катионами и ЗК с анионом. Химические соединения и ЗК-гомологи располагаются в треугольнике и в треугольной пирамиде в точке пересечения отрезков прямых, которые связывают различные пары взаимодействующих компонент системы. Четырехкомпонентные гомологические серии XC развиваются в сторону обогащения их членов двухкомпонентными химическими соединениями A_cC_a , или B_cC_b , или D_cC_d . Существующая ГС непрерывна, но ограничена (n \geq 1). Протяженность ГС определяется экспериментально. В соответствии с непрерывным характером ГС ЧХС-гомологи с меньшим значением **n**, чем соответствующие экспериментально полученным ЧХС_n, должны существовать.

Для реально существующих химических соединений ЧХС_{n(bas)} при замене ионов A^{a+}, B^{b+}, D^{d+} и C^c в полученных здесь формулах ветвей ХС_n и ЗК_n на конкретные ионы ЧХС_{n(bas)} можно рассчитать формулы неизвестных ЧХС-гомологов. Такой расчет может помочь реализовать планы по поиску новых ЧХС-гомологов в искомых ГС для получения более подходящих свойств материала при использовании в тех или иных приборах по сравнению с ЧХС_{n(bas)}.

В данной работе **впервые** представлен способ расчета ГС четырехкомпонентных систем ионов ХЭ в **обобщенном виде**, что позволяет использовать его для конкретных систем ХЭ более эффективно. В качестве примера применения результатов **обобщенного** варианта расчета ГС использована хорошо изученная система (La³⁺ – Ni²⁺ – Ni³⁺ – O²⁻). В результате представлены результаты расчета одиннадцати ГС, которые можно использовать для получения новых ЧХС с улучшенными свойствами по сравнению с известными монокристаллами, относящимися к фазам Руддлесдена– Поппера. Расчеты показали, что монокристаллы, полученные в [16] и относящиеся к фазам Риддлесдена–Поппера, принадлежат разным ГС. Это открывает перспективы в поиске новых сверхпроводящих материалов.

Конфликт интересов

Не указан.

None declared.

Conflict of Interest

Рецензия

Все статьи проходят рецензирование. Но рецензент или автор статьи предпочли не публиковать рецензию к этой статье в открытом доступе. Рецензия может быть предоставлена компетентным органам по запросу.

Review All articles are peer-reviewed. But the reviewer or the author of the article chose not to publish a review of this article in the public domain. The review can be provided to the competent authorities upon request.

Список литературы / References

1. Урусов В. С. Теоретическая кристаллохимия / В. С. Урусов. — Москва : МГУ, 1987.

2. Ковба Л. М. Стехиометрия, дефекты в кристаллах и структурная гомология / Л. М. Ковба. — Москва : Знание, 1988.

3. Ундалов Ю. К. Прогнозирование формул многокомпонентных химических соединений: трехкомпонентные системы, формирование гомологических серий соединений / Ю. К. Ундалов // ЖНХ. — 1998. — Т. 43. — № 9. — С. 1561–1564.

4. Ундалов Ю. К. Прогнозирование формул многокомпонентных химических соединений: трехкомпонентные системы, расчет формул гомологических серий / Ю. К. Ундалов // ЖНХ. — 1999. — Т. 44. — № 8. — С. 1389–1392.

5. Ундалов Ю. К. Прогнозирование формул многокомпонентных химических соединений: трехкомпонентные системы, сравнение расчета с экспериментом / Ю. К. Ундалов // ЖНХ. — 1999. — Т. 44. — № 9. — С. 1557–1560.

6. Ундалов Ю. К. Гомологические серии химических соединений системы (Li+ – Fe2+ – P5+ – O2-) / Ю. К. Ундалов, Е. И. Теруков, А. В. Бобыль // Известия СПбГТИ (ТУ). — 2017. — № 39(65). — С. 32–38.

7. Ундалов Ю. К Гомологические серии химических соединений в системе (Y3+ – Ba2+ – Cu2+ – Cu3+ – O2-) / Ю. К. Ундалов, Е. И. Теруков, А. В. Бобыль // Известия СПбГТИ(ТУ). — 2019. — № 49(75). — С. 9–17. DOI: 10.36807/1998-9849-2022-60-86-11-17

8. Ундалов Ю. К. Гомологические серии химических соединений: трех компонентные системы (Li+ – Ti4+ – O2-), (Na+ – Ti4+ – O2-), (K+ – V5+ – O2-), (Ba2+ – Cu2+ – O2-) и четырех компонентная система {Li+ – Fe2+ – (PO4)3-} / Ю. К. Ундалов, Е. И. Теруков, Д. В. Агафонов и др. // Известия СПбГТИ (ТУ). — 2021. — № 59(85). — С. 26–36. DOI: 10.36807/1998-9849-2021-59-85-26-36

9. Ундалов Ю. К. Гомологические серии химических соединений системы (Li+ – Ni3+ – Mn3+ – O2-) / Ю. К. Ундалов, Е. И. Теруков и др. // Известия СПбГТИ(ТУ). — 2022. — № 60(86). — С. 11–17. DOI: 10.36807/1998-9849-2022-60-86-11-1

10. Фок В. А. Начала квантовой механики / В. А. Фок. — Москва : Наука, 1976.

11. Roothaan C. C. J. New Developments in Molecular Orbital Theory / C. C. J. Roothaan // Rev. Mod. Phys. — 1951. — V. 23. — N. 2. — P. 69–89. DOI: 10.1103/RevModPhys.23.69.

12. Slater J. C. A Simplification of the Hartree-Fock Method / J. C. Slater // Phys. Rev. — 1951. — V. 81. — P. 385. DOI: 10.1103/PhysRev81.385

13. Babel D. Die Struktur einiger Fluoride, Oxide und Oxidfluoride AMe2X6: Der RbNiCrF6-Typ / D. Babel, G. Pausewang, W. Z. Viebahn // Zeitschrift fur Naturforschung. — 1967. — V. 22. — P. 1219–1220. https://doi.org/10.1515/znb-1967-1126

14. Gay P. L. Vacancy Ordering in Anion-deficient LaNiO3 / P. L. Gay, C. N. R. Rao // Z. Naturforsch. — 1975. — V. 30a. — N. 8. — P. 1092. DOI: 10.1515/zna-1975-0831

15. Li Z. Epitaxial Growth and Electronic Structure of Rudlesden-Popper nickelates Lan+1NinO3n+1, n=1-5 / Z. Li, W. Guo, N. N. Zhang et al. // APL Materials. — 2020. — V. 8. DOI:10.1063/5.0018934

16. Ruddlesden S. N. The Compound Sr3Ti2O7 and Its Structure / S. N. Ruddlesden, P. Popper // Acta Cryst. — 1958. — V. 11. — N. 54. — P. 55.

17. Drennan J. An Electron Microscope Investigation of Phases in the System Ln-Ni-O / J. Drennan, C. P. Tavares, B. C. H. Steele // Mater. Res. Bull. — 1982. — V. 17. — N. 5. — P. 621. DOI:10.1016/0025-5408(82)90044-7

18. Савченко В. Ф Синтез и электрические свойства двойного оксида лантана и никеля / В. Ф. Савченко, И. Я. Любкина // Неорганическая материя. — 1986. — Т. 22. — № 9. — С.1483.

19. Mohan Ram R. A. Evolution of Three-dimensional Character across the Lan + 1NinO3n + 1 Homologous Series with Increase in n / R. A. Mohan Ram, L. Ganapathi, P. Ganguly et al. // J. Solid State Chem. — 1986. — V. 63. — P. 139. DOI: 10.1016/0022-4596(86)90163-5

20. Liu Z. Evidence for Charge and Spin Density Waves in Single Crystals o0f La3Ni2O7 and La3Ni2O6 / Z. Liu, H. Sun, M. Huo et al. // Science China Physics, Mechanics and Astronomy. — 2023. — V. 66. — N. 217411.

21. Davies A. H. New Layer Structures in the La – Cu – O System / A. H. Davies, R. J. D.Tilley // Nature. — 1987. — V. 326. — N. 6116. — P. 859–861.

22. Raveau B. Oxygen Nonstoichiometry and Supercondactivity Mixed Valence Copper Oxides in Mixed Valence Copper Oxides / B. Raveau, C. Michel, M. Hervien // Solid State Ionics. — 1989. — V. 32/33. — P. 1035. DOI: 10.1016/0167-2738(89)90395-0

23. Kaldis E. Superconductors in the Y2Ba4Cu6 + nO14 + n Family Thermodynamics, Structure and Physical Characterization / E. Kaldis, J. Karpinski // Eur. J. Solid State Inorg. Chem. — 1990. — V. 27. — N. ½. — P. 143.

24. Senaris – Rodrigues M. A. A Novel "126" Phase of the Family of Y2Ba4Cu6 + nO14 + n High – Temperature Superconducting Materials / M. A. Senaris – Rodrigues, A. M. Chippindale, A. Vares et al. // Physica C. — 1991. — V. 172. — N. 5. — P. 477. DOI: 10.1016/0921-4534(91)90216-L

25. Harris D. C. Determination of Cu3+/Cu2+ Ratio in the Superconductor YBa2Cu3O8-x / D. C. Harris, N. A. Hewston // J. Solid State Chem. — 1987. — V. 69. — N. 1. — P. 182–185. DOI: 10.1016/0022-4596(87)90025-9

26. Wu G. Magnetic Susceptibility, Heat Capacity, and Pressure Dependence of the Electrical Resistivity of La3Ni2O7 and La4Ni3O10 / G. Wu, J. J. Neumeler, M. F. Hundley // Phys. Rev. — 2001.

27. Sun H. Signatures of Superconductivity Near 80 K in a Nickelate under High Pressure / H. Sun, M. You, X. Hu et al. // Nature. — 2023. — V. 621. — P. 493. DOI: 10.1038/s41586-023-06408-7

Список литературы на английском языке / References in English

1. Urusov V. S. Teoreticheskaja kristallohimija [Theoretical Crystal Chemistry] / V. S. Urusov. — Moscow : Moscow State University, 1987. [in Russian]

2. Kovba L. M. Stehiometrija, defekty v kristallah i strukturnaja gomologija [Stoichiometry, Defects in Crystals and Structural Homology] / L. M. Kovba. — Moscow : Znanie, 1988. [in Russian]

3. Undalov Yu. K. Prognozirovanie formul mnogokomponentnyh himicheskih soedinenij: trehkomponentnye sistemy, formirovanie gomologicheskih serij soedinenij [Forecasting Formulas of Multicomponent Chemical Compounds: Three-component Systems, Formation of Homologous Series of Compounds] / Yu. K. Undalov // ZHNKH. — 1998. — Vol. 43. — No. 9. — P. 1561–1564. [in Russian]

4. Undalov Yu. K. Prognozirovanie formul mnogokomponentnyh himicheskih soedinenij: trehkomponentnye sistemy, raschet formul gomologicheskih serij [Forecasting Formulas of Multicomponent Chemical Compounds: Three-component Systems, Calculation of Formulas of Homological Series] / Yu. K. Undalov // ZHNKH. — 1999. — Vol. 44. — No. 8. — P. 1389–1392. [in Russian]

5. Undalov Yu. K. Prognozirovanie formul mnogokomponentnyh himicheskih soedinenij: trehkomponentnye sistemy, sravnenie rascheta s jeksperimentom [Forecasting Formulas of Multicomponent Chemical Compounds: Three-component Systems, Comparison of Calculation with Experiment] / Yu. K. Undalov // ZHNKH. — 1999. — Vol. 44. — No. 9. — P. 1557–1560. [in Russian]

6. Undalov Yu. K. Gomologicheskie serii himicheskih soedinenij sistemy (Li+ – Fe2+ – P5+ – O2-) [Homologous Series of Chemical Compounds of the System (Li+ – Fe2+ – P5+ – O2-)] / Yu. K. Undalov, E. I. Terukov, A.V. Bobyl // Izvestiya SPbGTI (TU) [Proceedings of SPbSTI (TU)]. — 2017. — № 39(65). — P. 32–38. [in Russian]

7. Undalov Yu. Gomologicheskie serii himicheskih soedinenij v sisteme (Y3+ – Ba2+ – Cu2+ – Cu3+ – O2-) [Homologous Series of Chemical Compounds in the System (Y3+ – Ba2+ – Cu2+ – Cu3+ – O2-)] / Y. K. Undalov, E. I. Terukov, A.V. Bobyl // Izvestiya SPbGTI(TU) [Proceedings of SPbSTI (TU)]. — 2019. — N $_{2}$ 49(75). — P. 9–17. DOI: 10.36807/1998-9849-2022-60-86-11-17 [in Russian]

8. Undalov Yu. K. Gomologicheskie serii himicheskih soedinenij: treh komponentnye sistemy (Li+ – Ti4+ – O2-), (Na+ – Ti4+ – O2-), (K+ – V5+ – O2-), (Ba2+ – Cu2+ – O2-) i chetyreh komponentnaja sistema {Li+ – Fe2+ – (PO4)3-} [Homological Series of Chemical Compounds: Three-component Systems (Li+ – Ti4+ - O2–), (Na+ – Ti4+ - O2–), (K+ – V5+ – O2-), (Ba2+ – Cu2+ – O2-) and a Four-component System {Li+ – Fe2+ – (PO4)3-}] / Y. K. Undalov, E. I. Terukov, D. V. Agafonov et al. // Izvestiya SPbGTI (TU) [SPbSTI (TU)]. — 2021. — N $_{\text{D}}$ 59(85). — P. 26–36. DOI: 10.36807/1998-9849-2021-59-85-26-36 [in Russian]

9. Undalov Yu. K. Gomologicheskie serii himicheskih soedinenij sistemy (Li+ – Ni3+ – Mn3+ – O2-) [Homologous Series of Chemical Compounds of the System (Li+ – Ni3+ – Mn3+ – O2-)] / Yu. K. Undalov, E. I. Terukov et al. // Izvestiya SPbGTI(TU) [SPbSTI (TU)]. — 2022. — \mathbb{N} 60(86). — P. 11–17. DOI: 10.36807/1998-9849-2022-60-86-11-1 [in Russian]

10. Fok V. A. Nachala kvantovoj mehaniki [The Beginnings of Quantum Mechanics] / V. A. Fok. — Moscow : Nauka, 1976. [in Russian]

11. Roothaan C. C. J. New Developments in Molecular Orbital Theory / C. C. J. Roothaan // Rev. Mod. Phys. — 1951. — V. 23. — N. 2. — P. 69–89. DOI: 10.1103/RevModPhys.23.69.

12. Slater J. C. A Simplification of the Hartree-Fock Method / J. C. Slater // Phys. Rev. — 1951. — V. 81. — P. 385. DOI: 10.1103/PhysRev81.385

13. Babel D. Die Struktur einiger Fluoride, Oxide und Oxidfluoride AMe2X6: Der RbNiCrF6-Typ [The Structure of Some Fluorides, Oxides and Oxide Fluorides AMe2X6: The RbNiCrF6 Type] / D. Babel, G. Pausewang, W. Z. Viebahn // Zeitschrift fur Naturforschung [Journal of Nature Research]. — 1967. — V. 22. — P. 1219–1220. https://doi.org/10.1515/znb-1967-1126 [in German]

14. Gay P. L. Vacancy Ordering in Anion-deficient LaNiO3 / P. L. Gay, C. N. R. Rao // Z. Naturforsch. — 1975. — V. 30a. — N. 8. — P. 1092. DOI: 10.1515/zna-1975-0831

15. Li Z. Epitaxial Growth and Electronic Structure of Rudlesden-Popper nickelates Lan+1NinO3n+1, n=1-5 / Z. Li, W. Guo, N. N. Zhang et al. // APL Materials. — 2020. — V. 8. DOI:10.1063/5.0018934

16. Ruddlesden S. N. The Compound Sr3Ti2O7 and Its Structure / S. N. Ruddlesden, P. Popper // Acta Cryst. — 1958. — V. 11. — N. 54. — P. 55.

17. Drennan J. An Electron Microscope Investigation of Phases in the System Ln-Ni-O / J. Drennan, C. P. Tavares, B. C. H. Steele // Mater. Res. Bull. — 1982. — V. 17. — N. 5. — P. 621. DOI:10.1016/0025-5408(82)90044-7

18. Savchenko V. Sintez i jelektricheskie svojstva dvojnogo oksida lantana i nikelja [Synthesis and Electrical Properties of Double Lanthanum and Nickel Oxide] / V. F. Savchenko, I. Ya. Lyubkina // Neorganicheskaja materija [Inorganic Matter]. — 1986. — Vol. 22. — No. 9. — P. 1483. [in Russian]

19. Mohan Ram R. A. Evolution of Three-dimensional Character across the Lan + 1NinO3n + 1 Homologous Series with Increase in n / R. A. Mohan Ram, L. Ganapathi, P. Ganguly et al. // J. Solid State Chem. — 1986. — V. 63. — P. 139. DOI: 10.1016/0022-4596(86)90163-5

20. Liu Z. Evidence for Charge and Spin Density Waves in Single Crystals o0f La3Ni2O7 and La3Ni2O6 / Z. Liu, H. Sun, M. Huo et al. // Science China Physics, Mechanics and Astronomy. — 2023. — V. 66. — N. 217411.

21. Davies A. H. New Layer Structures in the La – Cu – O System / A. H. Davies, R. J. D.Tilley // Nature. — 1987. — V. 326. — N. 6116. — P. 859–861.

22. Raveau B. Oxygen Nonstoichiometry and Supercondactivity Mixed Valence Copper Oxides in Mixed Valence Copper Oxides / B. Raveau, C. Michel, M. Hervien // Solid State Ionics. — 1989. — V. 32/33. — P. 1035. DOI: 10.1016/0167-2738(89)90395-0

23. Kaldis E. Superconductors in the Y2Ba4Cu6 + nO14 + n Family Thermodynamics, Structure and Physical Characterization / E. Kaldis, J. Karpinski // Eur. J. Solid State Inorg. Chem. — 1990. — V. 27. — N. ½. — P. 143.

24. Senaris – Rodrigues M. A. A Novel "126" Phase of the Family of Y2Ba4Cu6 + nO14 + n High – Temperature Superconducting Materials / M. A. Senaris – Rodrigues, A. M. Chippindale, A. Vares et al. // Physica C. — 1991. — V. 172. — N. 5. — P. 477. DOI: 10.1016/0921-4534(91)90216-L

25. Harris D. C. Determination of Cu3+/Cu2+ Ratio in the Superconductor YBa2Cu3O8-x / D. C. Harris, N. A. Hewston // J. Solid State Chem. — 1987. — V. 69. — N. 1. — P. 182–185. DOI: 10.1016/0022-4596(87)90025-9

26. Wu G. Magnetic Susceptibility, Heat Capacity, and Pressure Dependence of the Electrical Resistivity of La3Ni2O7 and La4Ni3O10 / G. Wu, J. J. Neumeler, M. F. Hundley // Phys. Rev. — 2001.

27. Sun H. Signatures of Superconductivity Near 80 K in a Nickelate under High Pressure / H. Sun, M. You, X. Hu et al. // Nature. — 2023. — V. 621. — P. 493. DOI: 10.1038/s41586-023-06408-7

16