ТЕХНОЛОГИЯ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ/TECHNOLOGY OF INORGANIC SUBSTANCES

DOI: https://doi.org/10.60797/CHEM.2025.7.3

ФОРМИРОВАНИЕ ГОМОЛОГИЧЕСКИХ СЕРИЙ ХИМИЧЕСКИХ СОЕДИНЕНИЙ В СИСТЕМАХ (IR^{4+} – IR^{5+} – O^{2-}), (CA^{2+} – IR^{5+} – O^{2-}) И (CA^{2+} – IR^{4+} – O^{2-}) НА БАЗЕ СОЕДИНЕНИЙ IR^{4+} 5 IR^{5+} 4 O_{20} , CA_5IR^{5+} 2 O_{10} , И $CA_2IR^{4+}O_4$

Научная статья

Ундалов Ю.К.^{1, *}

 1 Физико-технический институт имени А.Ф. Иоффе РАН, Санкт-Петербург, Российская Федерация

* Корреспондирующий автор (undal[at]yandex.ru)

Аннотация

В работе представлен упрощенный расчет формул гомологических серий химических соединений трех компонентных систем ($Ir^{4+} - Ir^{5+} - O^{2-}$), ($Ca^{2+} - Ir^{4+} - O^{2-}$) и ($Ca^{2+} - Ir^{5+} - O^{2-}$). Формулы полученных расчетом шести гомологических серий имеют следующий вид: $Ir^{4+}{}_{5n}Ir^{5+}{}_4O_{10n+10}$, $Ir^{4+}{}_5Ir^{5+}{}_{4n}O_{10n+10}$, $Ca_2Ir^{4+}{}_nO_{2n+2}$, $Ca_2Ir^{4+}O_{2n+2}$, $Ca_5Ir^{5+}{}_{2n}O_{5n+5}$ и $Ca_{5n}Ir^{5+}{}_2O_{5n+5}$. Расчет гомологических серий трех компонентных систем произведен на базе соединений $Ir^{4+}{}_{54}Ir^{5+}{}_4O_{20}$, $Ca_5Ir^{5+}{}_2O_{10}$ и Ca_2Ir^{4+} О4, которые участвуют в образовании четырех компонентного соединения $Ca_{10}Ir^{4+}{}_5Ir^{5+}{}_4O_{30}$. Рассчитанные формулы гомологических серий потенциально дают возможность улучшить характеристики уже известных трех компонентных катализаторов, например, $Ca_2Ir^{4+}O_4$, $Ca_2Ir^{4+}O_6$ и $Ca_4Ir^{4+}O_6$.

Ключевые слова: гомологические серии, химические соединения, заряженные кластеры, способ расчета, трех компонентные системы, ионы химических элементов, катализаторы.

FORMATION OF HOMOLOGOUS SERIES OF CHEMICAL COMPOUNDS IN (IR $^{4+}$ – IR $^{5+}$ – O $^{2-}$), (CA $^{2+}$ – IR $^{5+}$ –O $^{2-}$) AND (CA $^{2+}$ – IR $^{4+}$ – O $^{2-}$) SYSTEMS BASED ON COMPOUNDS IR $^{4+}$ 5IR $^{5+}$ 4O₂₀, CA₅IR $^{5+}$ 2O₁₀ AND CA₂IR $^{4+}$ O₄

Research article

Undalov Y.K.1,*

¹ Ioffe Institute, Russian Academy of Sciences, Saint-Petersburg, Russian Federation

* Corresponding author (undal[at]yandex.ru)

Abstract

This paper presents for the first time a simplified calculation of formulas for homologous series of chemical compounds of three–component systems ($Ir^{4+} - Ir^{5+} - O^{2-}$), ($Ca^{2+} - Ir^{4+} - O^{2-}$) and ($Ca^{2+} - Ir^{5+} - O^{2-}$). The formulas obtained by calculating the six homologous series have the following form: $Ir^{4+}{}_{5n}Ir^{5+}{}_{4}O_{10n} + {}_{10}$, $Ir^{4+}5Ir_{5}^{+}{}_{4n}O_{10n} + {}_{10}$, $Ca_2Ir^{4+}{}_n O_{2n+2}$, $Ca^2nIr^{4+}O_{2n+2}$, $Ca^5Ir^{5+}{}_{2n}O_{5n} + {}_5$ and $Ca_{5n}Ir^{5+}2O_{5n+5}$. Homologous series of three-component systems were calculated on the basis of compounds $Ir^{4+}5Ir^{5+}4O_{2n+2}$, $Ca_{5n}Ir^{5+}2O_{5n+5}$. Homologous series of three-component in the formation of the four-component compound $Ca_{10}Ir^{4+}_5Ir^{5+}_4O_{30}$. The calculated formulas of homologous series potentially make it possible to improve the characteristics of already known three-component catalysts, for example, $Ca_2Ir^{4+}O_4$, $Ca_2Ir^{4+}_2O_6$ and $Ca_4Ir^{4+}O_6$.

Keywords: homologous series, chemical compounds, charged clusters, calculation method, three-component systems, ions of chemical elements, catalysts.

Введение

Химические соединения (**XC**) используются в большинстве различных приборов. Как известно, любое многокомпонентное XC является членом какой-нибудь гомологической серии (Γ C) с $n \ge 1$. Фундаментальные характеристики гомологов одной и той же Γ C изменяются закономерно, что является важным фактором для изучения Γ C. При использовании этой особенности Γ C у исследователей появляется возможность везти поиск новых XC-гомологов, свойства которых могут оказаться лучше, чем у известного XC, который уже используется в каком-либо приборе.

Известны, например, экспериментально полученные XC, описываемые формулами, которым свойственно закономерное изменение состава:

- известны «фазы Магнели»: Me_nO_{3n-1} , W_nO_{3n-2} [4]. Следует заметить, что при условии соблюдения электро нейтральности формул XC во всех кристаллических решетках XC, описываемых формулами из [1], [2], [3], [4], которые относятся к «фазам Магнели», должны присутствовать два разно валентных одноименных катиона: Me_nO_{3n-1} , W_nO_{3n-2} ($M \equiv Mo$, W, Re), где n = 20, 38-40) [4] и M_nO_{2n-1} ($M \equiv Ti$, V) [2], [3], [4];
- известны фазы систем (La-Ni-O), (La-Cu-O) [5], [6], [7], [8], [9], (Sr-Ru-O) [10], составы которых обобщены авторами в виде формул ГС;
 - известны «фазы Андерсона» $M_4^+\text{Ti}^{4+}_n\text{O}_{2(n+1)}$, где (M^+ ≡ Li $^+$, Na $^+$, K $^+$, Rb $^+$, Cs $^+$ и n = 1-9) [11];
 - известна формула ГС системы (Fe^{2+} Fe^{3+} O^2): $nFeO \cdot mFe_2O_3$, где (n=1-4, 6) [12];
 - известна формула ГС системы $(Sr^{2+} Ti^{4+} O^2)$ [13];
 - известна формула ГС системы (Ba^{2+} Cu^{2+} O^{2-}) [14], [15].

Однако, как показано в работах [16], [17], [18], [19], составы, обобщенные авторами в приведенных ранее работах формулами, якобы относящимися к Γ С, к сожалению, не относятся к последним по следующим причинам: представленные формулы не электро-нейтральны, так как в них отсутствуют одноименные разно валентные химические элементы (**X3**). Кроме этого в основном это вызвано отсутствием знаний законов формирования Γ С.

В работах [16], [17], [18], [19] впервые были разработаны основы формирования формул Γ С для трех компонентных систем ионов XЭ, ($A^{a^+} - B^{b^+} - C^c$), в обобщенном виде, которые впоследствии были развиты для четырех компонентных систем ($A^{a^+} - B^{b^+} - D^{d^+} - C^c$) [21], [22] и для пяти компонентных систем ($A^{a^+} - B^{b^+} - D^{d^+} - F^{f^+} - C^c$) [22], [24], [25], [26]. Кроме этого, для четырех- и пяти компонентных систем в работе [22] показано, что Γ С могут развиваться только в сторону двух компонентных XC (**ДХС**), а в сторону трех компонентных XC (**ТХС**) – Γ С не могут развиваться. Разработанный способ расчета формул Γ С использовался в ряде работ применительно к различным конкретным системам ионов XЭ: ($Na^+ - TI^{4^+} - O^{2^-}$), ($Li^+ - Ti^{4^+} - O^{2^-}$), ($K^+ - V^{5^+} - O^{2^-}$), ($Ba^{2^+} - Cu^{2^+} - O^{2^-}$) { $Li^+ - Fe^{2^+} - (PO_4)^{3^+}$ }, ($Zn^{2^+} - Ge^{4^+} - P^{3^-}$) [17], [18], [19].

Рассчитанные в работах [17], [18] формулы ГС системы (M^+ – Ti^{4+} – O^2), где M^+ ≡ Li^+ , Na^+ , K^+ , полностью совпадают с формулой ГС, полученной только на основе экспериментов в [11].

Соединения пирохлора иридия (Na, Ca)_{2- x}(Ir_{2 - y}M_y)O₆, где (M = Sb, Zr, Ru, Rh), в частности, соединение Ca_{2-x}Ir₂O₆·пH₂O проявляют высокую электро каталитическую активность при выделении кислорода из водных в сильно кислотных условиях при ~80 °C с сохранением стабильности структуры [27], [28]. Авторы работ [29], [30] обнаружили в кристаллической решетке Ca₅Ir₃O₁₂ присутствие ионов Ir⁴⁺ и Ir⁵⁺ в соотношении ½. Следуя работам [29], [30] и соблюдая электро нейтральность формулы соединения Ca₅Ir₃O₁₂ правильно записать так: Ca₅Ir₃O₁₂ \equiv Ca₅Ir⁴⁺Ir⁵⁺₂O₁₂ [29]. По этой причине, при поиске новых соединений в системе (кальций-иридий-кислород), которой принадлежит соединение Ca₅Ir⁴⁺Ir⁵⁺₂O₁₂, с помощью формул ГС химических соединений, необходимо эту систему XЭ представлять как четырех компонентную систему ионов (Ca²⁺ - Ir⁴⁺ - Ir⁵⁺ - O²⁻) в виде треугольной пирамиды [6], [31]. Учитывая большой интерес к соединению Ca₅Ir⁴⁺Ir⁵⁺₂O₁₂ как к катализатору, в работе [31] были рассчитаны формулы ГС химических соединений системы (Ca²⁺ - Ir⁴⁺ - Ir⁵⁺ - O²⁻) на базе этого четырехкомпонентного соединения, Ca₅Ir⁴⁺Ir⁵⁺₂O₁₂: Ca_{7n-2} Ir⁴⁺Ir⁵⁺₂O_{7n+5}, Ca₅Ir⁴⁺₅Ir⁵⁺_{14n-4} O²⁻) оказался возможным при ее представлении треугольной пирамидой, в углы основания которой помещены ионы Ca²⁺, Ir⁴⁺ и Ir⁵⁺, а в вершине — O²⁻ [27].

Формирование трех- и четырех компонентных ГС системы (Ca^{2+} – Ir^{4+} – Ir^{5+} – O^2 -) можно представить, если выявить **закономерности химических взаимодействий химических компонент** этой системы. Это удается осуществить, если **сначала рассмотреть в трех компонентных подсистемах (Ca^{2+}– Ir^{4+}– O^2-), (Ca^{2+}– Ir^{4+}– O^2-) и (Ir^{4+}– Ir^{5+}– O^2-) цепь последовательно протекающих химических взаимодействий начиная с образования окислов CaO, IrO_2 и Ir_2O_5. При этом, следует учесть существование соединений Ca_2Ir^{4+}O_4, Ca_2Ir^{4+}O_6 и Ca_4Ir^{4+}O_6, которые известны как термо- и кислотоустойчивые катализаторы для выделения кислорода в кислой среде [27], [28], [32].**

Как показывают работы [17], [19], [22], **геометрические особенности треугольной пирамиды** дают возможность из всех выявленных химических реакций определить те, которые ответственны за формирование Γ С.

Так, для системы (Ca^{2+} – Ir^{4+} – Ir^{5+} – O^{2-}) интересно проследить процесс формирования не только четырех компонентных ΓC , но и ΓC трех компонентных подсистем (Ca^{2+} – Ir^{4+} – O^{2-}), (Ca^{2+} – Ir^{5+} – O^{2-}) и (Ir^{4+} – Ir^{5+} – O^{2-}), так как гомологи трех компонентных ΓC (**TГ***C*) участвуют в формировании четырех компонентных ΓC (**ЧГС**) [20], [23], [31].

Цель работы: рассчитать формулы $\Gamma C X C$ трех компонентных подсистем ($Ir^{4+} - Ir^{5+} - O^{2-}$), ($Ca^{2+} - Ir^{5+} - O^{2-}$) и ($Ca^{2+} - Ir^{4+} - O^{2-}$).

Основная часть

При определении схемы формирования Γ С системы ($Ca^{2+} - Ir^{4+} - Ir^{5+} - O^{2-}$) **необходимо сначала рассмотреть трех компонентные подсистемы** ($Ir^{4+} - Ir^{5+} - O^{2-}$), ($Ca^{2+} - Ir^{5+} - O^{2-}$) и ($Ca^{2+} - Ir^{4+} - O^{2-}$), так как они являются боковыми гранями треугольной пирамиды и члены Γ С (участвуют в формировании четырех компонентных Γ С [20], [23], [31].

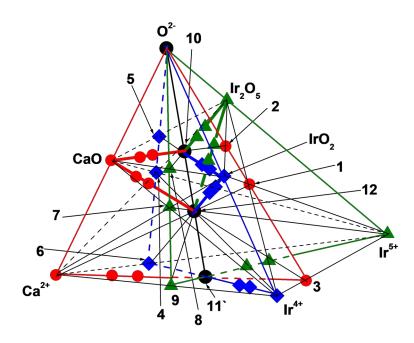


Рисунок 1 - Система ($Ca^{2+} - Ir^{4+} - Ir^{5+} - O^{2-}$) DOI: https://doi.org/10.60797/CHEM.2025.7.3.1

На рис. 1:

T. $\mathbf{1} = [Ir^{4+} {}_5Ir^{5+} {}_4O_{10}]^{20+}, \mathbf{r.} \mathbf{2} = Ir^{4+} {}_5Ir^{5+} {}_4O_{20}, \mathbf{r.} \mathbf{3} = [Ir^{4+} {}_5Ir^{5+} {}_4]^{40+}, \mathbf{r.} \mathbf{4} = [Ca_5Ir^{5+} {}_2O_5]^{10+},$

 $\textbf{T. 5} = Ca_5Ir^{5+}{}_2O_{10}, \textbf{T. 6} = [Ca_5Ir^{5+}{}_2]^{20+}, \textbf{T. 7} = ([Ca_2Ir^{4+}O_2]^{4+} \textbf{T. 8} = Ca_2Ir^{4+}O_4,$

 $\textbf{T. 9} = [Ca_2Ir^{4+}]^{8+}, \ \textbf{T. 10} = \textbf{YXC}_{n(bas)=1} = Ca_{20}Ir^{4+}_{10}Ir^{5+}_{8}O_{60} \equiv Ca_{10}Ir^{4+}_{5}Ir^{5+}_{4}O_{30},$

T. 11 = $[Ca_{10}Ir^{4+}_{5}Ir^{5+}_{4}]^{60+}$, **T.** 12 = $4XC_{n(bas)} = 1 = [Ca_{20}Ir^{4+}_{10}Ir^{5+}_{8}O_{20}]^{80+}$,

T. 13 = $[Ca_{30}Ir^{4+}{}_5Ir^{5+}{}_4O_{30}]^{40+}$, **T.** 14 = $Ca_{30}Ir^{4+}{}_5Ir^{5+}{}_4O_{50}$, **T.** 15 = $[Ca_{30}Ir^{4+}{}_5Ir^{5+}{}_4]^{100+}$,

T. 16 = $[Ca_{10}Ir^{4+}_{15}Ir^{5+}_{4}O_{30}]^{40+}$, **T.** 17 = $Ca_{10}Ir^{4+}_{15}Ir^{5+}_{4}O_{50}$, **T.** 18 = $[Ca_{10}Ir^{4+}_{15}Ir^{5+}_{4}]^{100+}$.

При решении поставленной задачи рассматривается **цепь последовательно протекающих химических взаимодействий начиная с образования активированных окислов Ir_2O_5, IrO_2 и CaO**, которые могут взаимодействовать друг с другом с образованием ряда $TXC_n \ge 1$ — гомологов различных TFC. На рис. 1–4 взаимодействия ДХС-окислов друг с другом представляются отрезками ($Ir_2O_5 - IrO_2$), ($IrO_2 - CaO$) и ($Ir_2O_5 - CaO$).

В трех компонентных подсистемах ионов ХЭ ДХС-окислы могут также взаимодействовать с недостающим в их составе положительно заряженным ионом ХЭ с образованием трех компонентных заряженных кластеров ($T3K_{n \ge 1}$) (рис. 1–4).

В свою очередь, следуя последовательности чередования протекающих взаимодействий, $T3K_{n \ge 1}$ могут окисляться образуя $TXC_{n \ge 1}$ — гомологи (рис. 1—4).

Эти же $TXC_{n \ge 1}$, как сказано выше, могут также образоваться в результате химического взаимодействия ДХС-окислов друг с другом в соответствии с рассматриваемой системой ионов XЭ.

Рассматриваемые выше взаимодействия представляются в треугольниках ($Ir^{4+} - Ir^{5+} - O^{2-}$), ($Ca^{2+} - Ir^{5+} - O^{2-}$) или ($Ca^{2+} - Ir^{4+} - O^{2-}$) соответствующими отрезками: ($Ir_2O_5 - IrO_2$), ($IrO_2 - Ir^{5+}$), ($Ir_2O_5 - Ir^{4+}$), ($IrO_3 - Ir^{4+}$), ($IrO_4 - Ir^{4+}$), (

2.1. Трехкомпонентные подсистемы

Как отмечалось выше, для расчета формул ЧГС необходимо вначале рассмотреть схемы формирования ТГС в подсистемах ($Ca^{2+} - Ir^{4+} - O^{2-}$), ($Ca^{2+} - Ir^{5+} - O^{2-}$) и ($Ir^{4+} - Ir^{5+} - O^{2-}$) на рис. 1-4.

2.1.1. Подсистема ($Ca^{2+} - Ir^{5+} - O^{2-}$)

Следуя последовательному чередованию взаимодействий в подсистеме (Ca^{2+} – Ir^{4+} – O^2) можно увидеть, что кластер CaO реагируя с Ir^{5+} , а кластер Ir_2O_5 реагируя с Ca^{2+} образуют **один и тот же кластер** ($[Ca_5Ir^{5+}_2O_5]^{10+}$ = $T3K_{n(bas)}$ = $T3K_{n(bas)}$ = $T3K_{n(bas)}$ + $T3K_{n(bas)}$ + T3

В свою очередь, кластеры ($[Ca_5Ir^{5+}{}_2O_5]^{10+} = T3K_{n(bas)}{}_{=1} = т.$ 4) и ($[Ca_5Ir^{5+}{}_2]^{20+} = Д3K_{n(bas)}{}_{=1} = т.$ 6) окисляясь образуют кластер ($Ca_5Ir^{5+}{}_2O_{10} = TXC_{n(bas)}{}_{=1} = т.$ 5) на рис. 1, 2:

$$5\text{Ca}^{2+} + \text{Ir}_2\text{O}_5 = 2\text{Ir}^{5+} + 5\text{CaO} = \left(\left[\textbf{Ca}_{\bf 5}\textbf{Ir}^{5+}{}_{\bf 2}\textbf{O}_{\bf 5} \right]^{10+} = \text{T3K}_{\textbf{n}(\text{bas})=1} = \text{T. 4} \right) \tag{1}$$

$$\left(\left[\text{Ca}_{5} \text{Ir}^{5+}{}_{2} \text{O}_{5} \right]^{10+} = \text{T3K}_{\text{n(bas)}=1} = \text{T. 4} \right) + 5\text{O}^{2-} = 5\text{CaO} + \text{Ir}_{2} \text{O}_{5} =
= \left(\text{Ca}_{5} \text{Ir}^{5+}{}_{2} \text{O}_{10} = \text{TXC}_{\text{n(bas)}=1} = \text{T. 5} \right)$$
(2)

$$\left\{5Ca^{2+} + 2Ir^{5+} = \left(\left[Ca_{5}Ir^{5+}_{2}\right]^{20+} = \mathcal{I}3K_{\mathbf{n}(\text{bas})=1} = \text{T. 6}\right)\right\} + 10O^{2-} =$$

$$= \left(Ca_{5}Ir^{5+}_{2}O_{10} = TXC_{\mathbf{n}(\text{bas})=1} = \text{T. 5}\right)$$
(3)

В подсистеме ($Ca^{2^+} - Ir^{5^+} - O^{2^-}$) базовый кластер ($Ca_5Ir^{5^+}{}_2O_{10} = TXC_{n(bas)}{}_{=1} = \tau$. 5) взаимодействуя с Ir^{5^+} начинает формировать αp - ΓC -2 (направление CaO) на рис. 1, 2.

2.1.1.1. Направление Ir₂O₅

Взаимодействие базового кластера ($Ca_5Ir^{5+}{}_2O_{10} = TXC_{n(bas)}{}_{=1} = \tau$. 5) с Ir^{5+} и взаимодействие Ca^{2+} с Ir_2O_5 производят второй гомолог α m- Γ C-1 ($[Ca_5Ir^{5+}{}_4O_{10}]^{10+} = T3K_{n(bas)}{}_{+1}{}_{=2} = \tau$. 19), который окисляясь образует второй гомолог той же Γ C-1 ($Ca_5Ir^{5+}{}_4O_{15} = TXC_{n(bas)}{}_{+1}{}_{=2} = \tau$. 20) на рис. 2:

$$(Ca_5Ir^{5+}{}_2O_{10} = TXC_{n(bas)} = 1 = T. 5) + 2Ir^{5+} = 5Ca^{2+} + 2Ir_2O_5 =$$

$$= ([Ca_5Ir^{5+}{}_4O_{10}]^{10+} = T3K_{n(bas)+1=2} = T. 19)$$
(4)

$$\left(\left[\text{Ca}_{5}\text{Ir}^{5+}{}_{4}\text{O}_{10} \right]^{10+} = \text{T3K}_{\text{n}(bas)+1=2} = \text{T. } 19 \right) + 5\text{O}^{2-} = 5\text{CaO} + 2\text{Ir}_{2}\text{O}_{5} =$$

$$= \left(\text{Ca}_{5}\text{Ir}^{5+}{}_{4}\text{O}_{15} = \text{TXC}_{\text{n}(bas)+1=2} = \text{T. } 20 \right)$$
(5)

Гомологическая разница Δ для α m- Γ C-1 определится так:

$$\Delta = \left(\text{Ca}_{5}\text{Ir}^{5+}_{4}\text{O}_{15} = \text{TXC}_{\text{n(bas)}+1=2} = \text{ T. } 20\right) - \left(\text{Ca}_{5}\text{Ir}^{5+}_{2}\text{O}_{10} = \text{TXC}_{\text{n(bas)}=1} = \text{ T. } 5\right) = \text{Ir}_{2}\text{O}_{5}$$
(6)

Так как ($TXC_n = TXC_{n=1} + k \cdot \Delta$), ($TXC_{n=1} = TXC_{n(bas)} - k_{bas} \cdot \Delta$) и ($n_{(bas)} = k_{bas} + 1$), то выясняется, что при определении $TXC_{n=1}$, вычитать формулу ($\Delta = Ir_2O_5$) из формулы ($Ca_5Ir^{5+}{}_2O_{10} = TXC_{n(bas)}{}_{=1} = \tau$. 5) нельзя. Следовательно, $k_{bas} = 0$ и $n_{(bas)} = 1$. Тогда получим формулу αm - ΓC -1:

ветвь XC am -
$$\Gamma$$
C - $1 - (Ca_5Ir^{5+}{}_2O_{10} = TXC_{n(bas)=1} = т. 5) + +(n-1)Ir_2O_5 = Ca_5Ir^{5+}{}_{2n}O_{5n+5}$ (7)

2.1.1.2. Направление СаО

Взаимодействие базового кластера ($Ca_5It^{5+}_2O_{10} = TXC_{n(bas)} = 1 = \tau$. 5) с Ca^{2+} и взаимодействие CaO с Ir^{5+} производят второй гомолог α p- Γ C-2 ($[Ca_{10}Ir^{5+}_2O_{10}]^{10+} = T3K_{n(bas)+1} = 2 = \tau$. 22), который окисляясь образует второй гомолог той же Γ C-2 ($Ca_{10}Ir^{5+}_2O_{15} = TXC_{n(bas)+1} = 2 = \tau$. 23) на рис. 2:

$$(Ca_5 Ir^{5+}{}_2O_{10} = TXC_{n(\text{bas})=1} = T.5) + 5Ca^{2+} = 2Ir^{5+} + 10CaO =$$

$$= ([Ca_{10}Ir^{5+}{}_2O_{10}]^{10+} = T3K_{n(\text{bas})+1=2} = T.22)$$
(8)

$$\left(\left[\text{Ca}_{10} \text{Ir}^{5+}_{2} \text{O}_{10} \right]^{10+} = \text{T3K}_{\text{n(bas)}+1=2} = \text{T. } 22 \right) + 5\text{O}^{2-} = 10\text{CaO} + \text{Ir}_{2}\text{O}_{5} =
= \left(\text{Ca}_{10} \text{Ir}^{5+}_{2} \text{O}_{15} = \text{TXC}_{\text{n(bas)}+1=2} = \text{T. } 23 \right)$$
(9)

Гомологическая разница Δ для α р- Γ С-2 определится так:

$$\Delta = \left(\text{Ca}_{10} \text{Ir}^{4+} {}_{2} \text{O}_{15} = \text{TXC}_{\text{n(bas)} + 1 = 2} = \text{T. } 23 \right) - \left(\text{Ca}_{5} \text{Ir}^{5+} {}_{2} \text{O}_{10} = \text{TXC}_{\text{n(bas)} - 1} = \text{T. } 5 \right) = \mathbf{Ca}_{5} \mathbf{O}_{5}$$
(10)

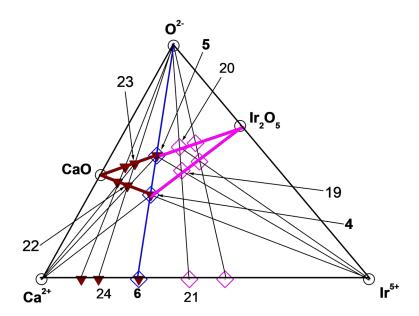


Рисунок 2 - Подсистема (Ca^{2+} – Ir^{5+} – O^{2-}) DOI: https://doi.org/10.60797/CHEM.2025.7.3.2

На рис. 2:

$$\begin{array}{l} \textbf{T. 4} = \textbf{T3K}_{n(bas)=1} = \textbf{Ca}_{5}\textbf{Ir}^{5+}{}_{2}\textbf{O}_{5}]^{10+}, \ \textbf{T. 5} = \textbf{YXC}_{n(bas)=1} = \textbf{Ca}_{5}\textbf{Ir}^{5+}{}_{2}\textbf{O}_{10}, \ \textbf{T. 6} = [\textbf{Ca}_{5}\textbf{Ir}^{5+}{}_{2}]^{20+}, \\ \textbf{T. 19} = [\textbf{Ca}_{5}\textbf{Ir}^{5+}{}_{4}\textbf{O}_{10}]^{10+}, \ \textbf{T. 20} = \textbf{Ca}_{5}\textbf{Ir}^{5+}{}_{4}\textbf{O}_{15}, \ \textbf{T. 21} = [\textbf{Ca}_{5}\textbf{Ir}^{5+}{}_{4}]^{30+}, \ \textbf{T. 22} = [\textbf{Ca}_{10}\textbf{Ir}^{5+}{}_{2}\textbf{O}_{10}]^{10+}, \\ \textbf{T. 23} = \textbf{Ca}_{10}\textbf{Ir}^{5+}{}_{2}\textbf{O}_{15}, \ \textbf{T. 24} = [\textbf{Ca}_{10}\textbf{Ir}^{5+}{}_{2}]^{30}. \end{array}$$

Так как (ТХС_n = ТХС_{n = 1} + k· Δ), (ТХС_{n = 1} = ТХС_{n(bas)} – k_{bas}· Δ) и (n_(bas) = k_{bas} + 1), то выясняется, что при определении ТХС_{n = 1}, вычитать формулу (Δ = Ca₅O₅) из формулы (Ca₅Ir⁵⁺₂O₁₀ = ТХС_{n(bas) = 1} = т. 5) нельзя. Следовательно, k_{bas} = 0 и n_(bas) = 1. Тогда получим формулу α р-ГС-2:

ветвь XC
$$\alpha$$
р-ГС-2 – $\left(Ca_5Ir_2^{5+}O_{10} = TXC_{n(\text{bas})=1} = т. 5 + (n-1)Ca_5O_5 = Ca_{5n}Ir_2^{5+}O_{5n+5}\right)$ (11)

2.1.2. Подсистема ($Ca^{2+} - Ir^{4+} - O^{2-}$)

В подсистеме ($Ca^{2^+} - Ir^{4^+} - O^{2^-}$) кластер CaO реагируя с Ir^{4^+} , а кластер IrO_2 взаимодействуя с Ca^{2^+} образуют **один и тот же кластер** ($[Ca_2Ir^{4^+}O_2]^{4^+} = T3K_{n(bas)=1} = \tau$. 7). В свою очередь, кластеры ($[Ca_2Ir^{4^+}O_2]^{4^+} = T3K_{n(bas)=1} = \tau$. 7) и ($[Ca_2Ir^{4^+}]^{8^+} = J3K_{n(bas)=1} = \tau$. 9) окисляясь образуют кластер ($Ca_2Ir^{4^+}O_4 = TXC_{n(bas)=1} = \tau$. 8) на рис. 1, 3:

$$2Ca^{2+} + IrO_2 = Ir^{4+} + 2CaO = \left(\left[\mathbf{Ca}_2 \mathbf{Ir}^{4+} \mathbf{O}_2 \right]^{4+} = T3K_{\mathbf{n}(\text{bas})=1} = T.7 \right)$$
(12)

$$\left(\left[\text{Ca}_2 \text{Ir}^{4+} \text{O}_2 \right]^{4+} = \text{T3K}_{\text{n(bas)}=1} = \text{T. 7} \right) + 2\text{O}^{2-} =$$

$$= 2\text{CaO} + \text{IrO}_2 = \left(\mathbf{Ca}_2 \mathbf{Ir}^{4+} \mathbf{O}_4 = \text{TXC}_{\mathbf{n(bas)}=1} = \text{T. 8} \right)$$
(13)

$$\left\{ 2Ca^{2+} + Ir^{4+} = \left(\left[Ca_2Ir^{4+} \right]^{8+} = ДЗK_{\mathbf{n}(\text{bas })=1} = т. 9 \right) \right\} + 8O^{2-} =
= \left(Ca_2Ir^{4+}O_4 = TXC_{\mathbf{n}(\text{bas })=1} = т. 8 \right)$$
(14)

В подсистеме (Ca^{2^+} - Ir^{4^+} - O^{2^-}) кластер ($Ca_2Ir^{4^+}O_4 = TXC_{n(bas)} = 1 = \tau$. 8) взаимодействуя с Ir^{4^+} начинает формировать αp - ΓC -3, а реагируя с Ca^{2^+} начинает формировать αp - ΓC -4 на рис. 1, 3:

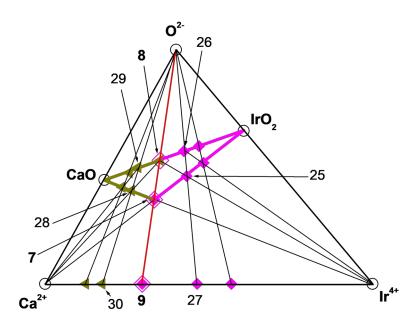


Рисунок 3 - Подсистема (Ca^{2+} – Ir^{4+} – O^{2-}) DOI: https://doi.org/10.60797/CHEM.2025.7.3.3

На рис. 3:

$$\begin{array}{l} \textbf{T. 7} = \textbf{T3K}_{n(bas) = 1} = [\textbf{Ca}_2 \textbf{Ir}^{4+} \textbf{O}_2]^{4+}, \, \textbf{T. 8} = \textbf{TXC}_{n(bas) = 1} = \textbf{Ca}_2 \textbf{Ir}^{4+} \textbf{O}_4, \, \textbf{T. 9} = [\textbf{Ca}_2 \textbf{Ir}^{4+}]^{8+}, \\ \textbf{T. 25} = [\textbf{Ca}_2 \textbf{Ir}^{4+}_2 \textbf{O}_4]^{4+}, \, \textbf{T. 26} = \textbf{Ca}_2 \textbf{Ir}^{4+}_2 \textbf{O}_6, \, \textbf{T. 27} = [\textbf{Ca}_2 \textbf{Ir}^{4+}_2]^{12+}, \, \textbf{T. 28} = [\textbf{Ca}_4 \textbf{Ir}^{4+} \textbf{O}_4]^{4+}, \\ \textbf{T. 26} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_2 \textbf{O}_4)^{4+}, \, \textbf{T. 27} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_2 \textbf{O}_4)^{4+}, \, \textbf{T. 28} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 27} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 28} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 28} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \\ \textbf{T. 29} = (\textbf{Ca}_4 \textbf{Ir}^{4+}_4 \textbf{O}_4)^{4+}, \, \textbf{T. 29} = (\textbf{Ca}_4 \textbf{I$$

T. 29 = $Ca_4Ir^{4+}O_6$, **T. 30** = $[Ca_4Ir^{4+}]^{12+}$.

2.1.2.1. Направление IrO₂

Взаимодействие базового кластера ($Ca_2Ir^{4+}O_4=TXC_{n(bas)=1}=\tau$. 8) с Ir^{4+} и взаимодействие Ca^{2+} с Ir_2O_5 производят второй гомолог α m- Γ C-3 ($[Ca_2Ir^{4+}{}_2O_4]^{4+}=T3K_{n(bas)+1=2}=\tau$. 25), который окисляясь образует второй гомолог той же Γ C-3 ($Ca_2Ir^{4+}O_6=TXC_{n(bas)+1=2}=\tau$. 26) на рис. 3:

$$([Ca_2Ir^{4+}_2O_4]^{4+} = T3K_{(bas)+1=2} = T. 25) + 2O^{2-} = 2CaO + 2IrO_2 =$$

$$= (Ca_2Ir^{4+}_2O_6 = TXC_{\mathbf{n}(bas)+1=2} = T. 26)$$
(16)

Гомологическая разница Δ для α m- Γ C-3 определится так:

$$\Delta = (Ca_2 Ir^{4+}{}_2O_6 = TXC_{n(bas)+1=2} = T. 26) - (Ca_2 Ir^{4+}O_4 = TXC_{n(bas)=1} = T. 8) = IrO_2$$
(17)

ветвь XC am-
$$\Gamma$$
C-3 – $\left(Ca_2Ir^{4+}O_4 = TXC_{n(bas)=1} = \tau. 8\right)$ +
+ $(n-1)Ir^{4+}O_2 = Ca_2Ir^{4+}{}_nO_{2n+2}$ (18)

2.1.2.2. Направление СаО

Взаимодействие базового кластера (Ca₂Ir⁴⁺O₄= $TXC_{n(bas)} = 1 = T$. 8) с Ca²⁺ и взаимодействие CaO с Ir⁴⁺ производят второй гомолог α p- Γ C-4 ([Ca₄Ir⁴⁺O₄]⁴⁺ = $T3K_{n(bas)} + 1 = 2 = T$. 28), который окисляясь образует второй гомолог той же Γ C-4 (Ca₄Ir⁴⁺O₆ = $TXC_{n(bas)} + 1 = 2 = T$.29) на рис. 3:

$$(Ca_{2}Ir^{5+}O_{4} = TXC_{n(bas)=1} = T.8) + 2Ca^{2+} = Ir^{4+} + 4CaO =$$

$$= ([Ca_{4}Ir^{4+}O_{4}]^{4+} = T3K_{n(bas)+1=2} = T.28)$$
(19)

$$([Ca_4Ir^{4+}O_4]^{4+} = T3K_{n(bas)+1=2} = T. 28) + 2O^{2-} = IrO_2 + 4CaO =$$

$$= (Ca_4Ir^{4+}O_6 = TXC_{n(bas)+1=2} = T. 29)$$
(20)

Гомологическая разница Δ для α р- Γ С-4 определится так:

$$\Delta = \left(\text{Ca}_{4} \text{Ir}^{4+} \text{O}_{6} = \text{TXC}_{\text{n(bas)}+1=2} = \text{T. } 29 \right) -$$

$$- \left(\text{Ca}_{2} \text{Ir}^{5+} \text{O}_{4} = \text{TXC}_{\text{n(bas)}=1} = \text{T. } 8 \right) = \mathbf{Ca}_{2} \mathbf{O}_{2}$$
(21)

Так как (ТХС_n = ТХС_{n = 1} + k· Δ), (ТХС_{n = 1} = ТХС_{n(bas)} – k_{bas} · Δ) и ($n_{(bas)}$ = k_{bas} + 1), то выясняется, что при определении ТХС_{n = 1}, вычитать формулу (Δ = Ca₂O₂) из формулы (Ca₂Ir⁴⁺O₄ = TXC_{n(bas) = 1} = τ . 8) нельзя. Следовательно, k_{basw} = 0 и $n_{(bas)}$ = 1. Тогда получим формулу α p-ГС-4:

ветвь XC ар-
$$\Gamma$$
C-4 – $\left(Ca_2Ir^{4+}O_4 = TXC_{n(bas)=1} = T. 8\right) + +(n-1)Ca_2O_2 = Ca_{2n}Ir^{4+}O_{2n+2}$ (22)

2.1.3. Подсистема ($Ir^{4+} - Ir^{5+} - O^{2-}$)

В подсистеме ($Ir^{4+} - Ir^{5+} - O^2$) кластер IrO_2 взаимодействуя с Ir^{5+} , а кластер Ir_2O_5 взаимодействуя с Ir^{4+} образуют **один и тот же кластер** ($[Ir^{4+}_5Ir^{5+}_4O_{10}]^{20+} = T3K_{n(bas)=1} = \tau$. 1). В свою очередь, кластеры ($[Ir^{4+}_5Ir^{5+}_4O_{10}]^{20+} = T3K_{n(bas)=1} = \tau$. 1) и ($[Ir^{4+}_5Ir^{5+}_4]^{40+} = \mathcal{I}_3K_{n(bas)=1} = \tau$. 3) окисляясь образуют кластер ($Ir^{4+}_5Ir^{5+}_4O_{20} = TXC_{n(bas)=1} = \tau$. 2) на рис. 1, 4:

$$4Ir^{5+} + 5IrO_2 = 2Ir_2O_5 + 5Ir^{4+} = \left(\left[\mathbf{Ir}^{4+} {}_5\mathbf{Ir}^{5+} {}_4\mathbf{O}_{10} \right]^{20+} = T3K_{\mathbf{n}(\text{ bas })=1} = T. 1 \right)$$
 (23)

$$\left(\left[Ir^{4+}{}_{5}Ir^{5+}{}_{4}O_{10} \right]^{20+} = T3K_{n(bas)=1} = T. \ 1 \right) + 10O^{2-} =$$

$$= 5IrO_{2} + 2Ir_{2}O_{5} = \left(Ir^{4+}{}_{5}Ir^{5+}{}_{4}O_{20} = TXC_{n(bas)=1} = T. \ 2 \right)$$
(24)

$$\left\{ 5\operatorname{Ir}^{4+} + 4\operatorname{Ir}^{5+} = \left(\left[\mathbf{Ir}^{4+} {}_{5}\mathbf{Ir}^{5+} {}_{4} \right]^{40+} = \operatorname{\mathcal{I}} 3\operatorname{K}_{\mathbf{n}(\operatorname{bas})=1} = \operatorname{T.} 3 \right) \right\} + 20O^{2-} =
= \left(\mathbf{Ir}^{4+} {}_{5}\mathbf{Ir}^{5+} {}_{4}\mathbf{O}_{20} = \operatorname{TXC}_{\mathbf{n}(\operatorname{bas})=1} = \operatorname{T.} 2 \right)$$
(25)

В подсистеме ($Ir^{4+} - Ir^{5+} - O^{2-}$) кластер ($Ir^{4+}{}_5Ir^{5+}{}_4O_{20} = TXC_{n(bas)}{}_{=1} = \tau$. 2) взаимодействуя с Ir^{5+} начинает формировать αp - ΓC -F0, а реагируя с Ir^{5+} начинает формировать F0.

2.1.3.1. Направление Ir₂O₅

Взаимодействие базового кластера ($Ir^{4+}_5Ir^{5+}_4O_{20} = 4XC_{n(bas)} = 1 = \tau$. 2) с Ir^{5+} и взаимодействие IrO_2 с Ir^{5+} производят второй гомолог αm - ΓC -5 ($[Ir^{4+}_5Ir^{5+}_8O_{20}]^{20+} = T3K_{n(bas)+1=2} = \tau$. 31), который окисляясь образует второй гомолог той же ΓC -5 ($Ir^{4+}_5Ir^{5+}_8O_{30} = 4XC_{n(bas)+1=2} = \tau$.32) на рис. 4:

$$\left(\left[\operatorname{Ir}_{5}^{4+} \operatorname{Ir}_{8}^{5+} \operatorname{O}_{20} \right]^{20+} = \operatorname{T3K}_{\text{n(bas)}+1=2} = \operatorname{T.} 31 \right) + 10 \operatorname{O}^{2-} = 5 \operatorname{Ir} \operatorname{O}_{2} + 4 \operatorname{Ir}_{2} \operatorname{O}_{5} =
= \left(\operatorname{Ir}_{5}^{4+} \operatorname{Ir}^{5+}_{8} \operatorname{O}_{30} = \operatorname{YXC}_{\mathbf{n}(\text{bas})+1=2} = \operatorname{T.} 32 \right)$$
(27)

Гомологическая разница Δ для α m- Γ C-5 определится так:

$$\Delta = \left(\text{Ir}^{4+} {}_{5} \text{Ir}^{5+} {}_{8} \text{O}_{30} = \text{YXC}_{\text{n(bas)}+1=2} = \text{T. } 32 \right) - \\
- \left(\text{Ir}^{4+} {}_{5} \text{Ir}^{5+} {}_{4} \text{O}_{20} = \text{YXC}_{\text{n(bas)}=1} = \text{T. } 2 \right) = \text{Ir}^{5+} {}_{4} \text{O}_{10}$$
(28)

Так как ($TXC_n = TXC_{n=1} + k \cdot \Delta$), ($TXC_{n=1} = TXC_{n(bas)} - k_{bas} \cdot \Delta$) и ($n_{(bas)} = k_{bas} + 1$), то выясняется, что при определении $TXC_{n=1}$, вычитать формулу ($\Delta = Ir^{5+}_4O_{10}$) из формулы ($Ir^{4+}_5Ir^{5+}_4O_{20} = TXC_{n(bas)=1} = \tau$. 2) нельзя. Следовательно, $k_{bas} = 0$ и $n_{(bas)} = 1$. Тогда получим формулу α m- Γ C-5:

ветвь XC аm-
$$\Gamma$$
C-5 – $\left(Ir^{4+}{}_{5}Ir^{5+}{}_{4}O_{20} = TXC_{n(bas)=1} = \text{ т. 2} \right) +$
+ $(n-1)Ir^{5+}{}_{4}O_{10} = Ir^{4+}{}_{5}Ir^{5+}{}_{4n}O_{10n+10}$ (29)

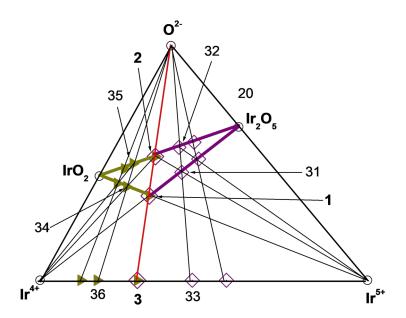


Рисунок 4 - Подсистема (Ir^{4+} – Ir^{5+} – O^{2-}) DOI: https://doi.org/10.60797/CHEM.2025.7.3.4

На рис. 4:

$$\begin{split} \textbf{T. } & 1 = \textbf{Y3K}_{n(bas) = 1} = [\textbf{Ir}^{4+}{}_{5}\textbf{Ir}^{5+}{}_{4}\textbf{O}_{10}]^{20+}, \textbf{T. } 2 = \textbf{YXC}_{n(bas) = 1} = \textbf{Ir}^{4+}{}_{5}\textbf{Ir}^{5+}{}_{4}\textbf{O}_{20}, \textbf{T. } 3 \ [\textbf{Ir}^{4+}{}_{5}\textbf{Ir}^{5+}{}_{4}]^{40+}, \\ \textbf{T. } & 31 = [\textbf{Ir}^{4+}{}_{5}\textbf{Ir}^{5+}{}_{8}\textbf{O}_{20}]^{20+}, \textbf{T. } 32 = \textbf{Ir}^{4+}{}_{5}\textbf{Ir}^{5+}{}_{8}\textbf{O}_{30}, \textbf{T. } 33 = [\textbf{Ir}^{4+}{}_{5}\textbf{Ir}^{5+}{}_{8}]^{60+}, \\ \textbf{T. } & 34 = ([\textbf{Ir}^{4+}{}_{10}\textbf{Ir}^{5+}{}_{4}\textbf{O}_{20}]^{20+}, \textbf{T. } 35 = \textbf{Ir}^{4+}{}_{10}\textbf{Ir}^{5+}{}_{4}\textbf{O}_{30}, \textbf{T. } 36 = [\textbf{Ir}^{4+}{}_{10}\textbf{Ir}^{5+}{}_{4}]^{60+}. \end{split}$$

2.1.3.2. Направление IrO₂

Взаимодействие базового кластера ($Ca_2Ir^{4+}O_4 = TXC_{n(bas)} = 1 = \tau$. 8) с Ir^{4+} и взаимодействие IrO_2 с Ir^{5+} производят второй гомолог α р- Γ С-6 (([$Ir^{4+}_{10}Ir^{5+}_{4}O_{20}$] $^{20+}$ = $T3K_{n(bas)+1=2}$ = τ . 34), который окисляясь образует второй гомолог той же Γ С-6 ($Ir^{4+}_{10}Ir^{5+}_{4}O_{30} = ЧXC_{n(bas)+1=2} = т. 35$) на рис. 4:

$$\left(\operatorname{Ir}^{4+}{}_{5}\operatorname{Ir}^{5+}{}_{4}\operatorname{O}_{20} = \operatorname{YXC}_{\operatorname{n}(\operatorname{bas})=1} = \operatorname{r.} 2\right) + 5\operatorname{Ir}^{4+} = 4\operatorname{Ir}^{5+} + 10\operatorname{Ir}\operatorname{O}_{2} = \\
= \left(\left[\operatorname{Ir}^{4+}{}_{10}\operatorname{Ir}^{5+}\mathbf{4}_{20}\right]^{20^{+}} = \operatorname{T3K}_{\operatorname{n}(\operatorname{bas})+1=2} = \operatorname{r.} 34\right)$$
(30)

$$\left(\left[\operatorname{Ir}^{4+}_{10} \operatorname{Ir}^{5+}_{4} \operatorname{O}_{20} \right]^{20+} = \operatorname{T3K}_{\mathrm{n(bas)}+1=2} = \operatorname{T.} 34 \right) + 10 \operatorname{O}^{2-} = 10 \operatorname{IrO}_{2} + 2 \operatorname{Ir}_{2} \operatorname{O}_{5} =$$

$$\left(\operatorname{Ir}^{4+}_{10} \operatorname{Ir}^{5+}_{4} \operatorname{O}_{30} = \operatorname{HXC}_{\mathrm{n(bas)}+1=2} = \operatorname{T.} 35 \right)$$
(31)

Гомологическая разница Δ для α р- Γ С-6 определится так:

$$\Delta = \left(\operatorname{Ir}^{4+}{}_{10} \operatorname{Ir}^{5+}{}_{4} O_{30} = \operatorname{YXC}_{\operatorname{n(bas)}+1=2} = \operatorname{T.} 35 \right) - \\
- \left(\operatorname{Ir}^{4+}{}_{5} \operatorname{Ir}^{5+}{}_{4} O_{20} = \operatorname{YXC}_{\operatorname{n(bas)}=1} = \operatorname{T.} 2 \right) = \operatorname{Ir}^{4+}{}_{5} \mathbf{O}_{10} \tag{32}$$

Так как ($TXC_n = TXC_{n=1} + k\cdot\Delta$), ($TXC_{n=1} = TXC_{n(bas)} - k_{bas}\cdot\Delta$) и ($n_{(bas)} = k_{bas} + 1$), то выясняется, что при определении $TXC_{n=1}$, вычитать формулу ($\Delta = Ir^{4+} {}_5O_{10}$) из формулы ($Ir^{4+} {}_5Ir^{5+} {}_4O_{20} = TXC_{n(bas)} = 1 = \tau$. 2) нельзя. Следовательно, $k_{bas} = 0$ и $n_{(bas)} = 1$. Тогда получим формулу αp - ΓC -6:

ветвь XC ар-
$$\Gamma$$
C-6 - $\left(Ir_5^{4+} Ir_4^{5+} O_{20} = TXC_{n(bas)=1} = т. 2 \right) +$
+ $(n-1)Ir_5^{4+} O_{10} = Ir_{5n}^{4+} Ir_4^{5+} O_{10n+10}$ (33)

Немного о связи ТХС-гомологов с формированием ЧГС: полученные выше кластеры в виде (Д $3K_{n(bas)=1} = \tau$. 3, τ . 6 и т. 9) взаимодействуя с недостающим в их составе ионом ХЭ, Ca^{2+} , Ir^{4+} и Ir^{5+} , соответственно, образуют в подсистеме (Ca^{2+} - Ir^{4+} - Ir^{5+}) кластер ($T3K_{n(bas)=1} = \tau$. 11), который состоит только из положительно заряженных ионов ХЭ, Ca^{2+} , Ir^{4+} и Ir^{5+} на рис. 1. Кластер ($T3K_{n(bas)=1} = \tau$. 11) окисляясь образует четырех компонентный кластер ($Ca_{20}Ir^{4+}{}_{10}Ir^{5+}{}_{8}O_{60} = VXC_{n(bas)=1} = \tau$. 10), который является базовым при формировании трех Γ С, развивающихся в сторону CaO, IrO_2 и Ir_2O_5 на рис. 1:

$$\begin{split} \left(\left[Ir^{4+}5Ir^{5+}4 \right]^{40+} &= \text{Д}3K_{n(\mathrm{bas})=1} = \text{т. 3} \right) \right\} + 10\text{Ca}^{2+} = 2 \left(\left[\text{Ca}_{5}Ir^{5+}2 \right]^{20+} = \text{Д}3K_{n(\mathrm{bas})=1} = \text{т. 6} \right) \right\} + 5Ir^{4+} = \\ &= 5 \left(\left[\text{Ca}_{2}Ir^{4+} \right]^{8+} = \text{Д}3K_{n(\mathrm{bas})=1} = \text{т. 9} \right) \right\} + 4Ir^{5+} = \left(\left[\text{Ca}_{10}Ir^{4+}5Ir^{5+} \right]^{60+} = \text{T}3K_{n(bas)=1} = \text{т. 11} \right) \end{split} \tag{34}$$

$$2\left(\left[\text{Ca}_{10}\text{Ir}^{4+}{}_{5}\text{Ir}^{5+}{}_{4}\right]^{60+} = \text{T3K}_{\text{n(bas)}=1} = \text{T. } 11\right) + 60\text{O}^{2-} =$$

$$= \left(\text{Ca}_{20}\text{Ir}^{4}{}_{10}\text{Ir}^{5+}{}_{8}\text{O}_{60} = \text{HXC}_{\text{n(bas)}=} = \text{T. } 10\right)$$
(35)

Уравнения реакций (34) и (35) говорит об участии двух компонентных кластеров в виде (Д $3K_{n(bas)=1}$ = т. 3, т. 6 и т. 9) в формировании первых четырех компонентных ГС начиная с образования первого гомолога ($Ca_{20}Ir^{4+}{}_{10}Ir^{5+}{}_{8}O_{60}$ = $4XC_{n(bas)=1}$ = т. 10).

Кроме этого, кластеры в виде (Д $3K_{n(bas)} = 1 = \tau$. 3, т. 6 и т. 9) взаимодействуя с активированными CaO, IrO $_2$ и Ir $_2O_5$, соответственно, образуют в системе (С $_3^{2+}$ – Ir $_3^{4+}$ – Ir $_3^{5+}$ – $_3^{5+}$ общий для них активированный кластер ([С $_3O_1^{4+}$ – Ir $_3^{5+}$ – $_3O_2^{60+}$] = $_3O_3$ – $_$

$$2\left(\left[\mathrm{Ir^{4+}}_{5}\mathrm{Ir^{5+}}_{4}\right]^{40+} = \mathcal{I}3\mathrm{K}_{\mathrm{n(bas)}=1} = \mathrm{T.}\ 3\right)\right\} + 20\mathrm{CaO} = 4\left(\left[\mathrm{Ca_{5}}\mathrm{Ir^{5+}}_{2}\right]^{20+} = \mathcal{I}3\mathrm{K}_{\mathrm{n(bas)}=1} = \mathrm{T.}\ 6\right)\right\} + 10\mathrm{IrO_{2}} = \\ = 10\left(\left[\mathrm{Ca_{2}}\mathrm{Ir^{4+}}\right]^{8+} = \mathcal{I}3\mathrm{K}_{\mathrm{n(bas)}=1} = \mathrm{T.}\ 9\right)\right\} + 4\mathrm{Ir_{2}O_{5}} = \left(\left[\mathrm{C_{20}}\mathrm{Ir^{4+}}_{10}\mathrm{Ir^{5+}}_{g}\mathrm{O_{20}}\right]^{60+} = \mathrm{H}3\mathrm{K}_{\mathrm{n(bas)}=1} = \mathrm{T.}\ 12\right)$$

Рассматривая формирование ЧГС из рис. 1 можно увидеть, что полученные в уравнениях реакций (23), (1) и (12) кластеры Т $3K_{n(bas)=1}$ = т. 1, т. 4 и т. 7, соответственно, могут взаимодействовать с недостающим в их составе ионом Х3, С a^{2+} , Іг $^{4+}$ или Іг $^{5+}$, соответственно, с образованием **одного общего для них кластера (Ч3K_{n(bas)=1} = т. 12), что говорит об участии Т3K_{n(bas)=1} = т. 1, т. 4 и т. 7 в формировании ЧГС на рис. 1:**

$$2\left(\left[\mathrm{Ir^{4+}}_{5}\mathrm{Ir^{5+}}_{4}\mathrm{O_{10}}\right]^{20+} = \mathrm{T3K_{n(bas)=1}} = \mathrm{T.}\ 1\right) + 20\mathrm{Ca^{2+}} = 4\left(\left[\mathrm{Ca_{5}\mathrm{Ir^{5+}}_{2}\mathrm{O_{5}}}\right]^{10+} = \mathrm{T3K_{n(bas)=1}} = \mathrm{T.}\ 4\right) + 10\mathrm{Ir^{4+}} = \\ = 10\left(\left[\mathrm{Ca_{2}\mathrm{Ir^{4+}}\mathrm{O_{2}}}\right]^{4+} = \mathrm{T3K_{n(bas)=1}} = \mathrm{T.}\ 7\right) + 8\mathrm{Ir^{5+}} = \left(\left[\mathrm{Ca_{20}\mathrm{Ir^{4+}}_{10}\mathrm{Ir^{5+}}_{8}\mathrm{O_{20}}}\right]^{60+} = \mathrm{Y3K_{n(bas)=1}} = \mathrm{T.}\ 12\right)$$

Геометрические особенности треугольника и треугольной пирамиды заключаются, в частности, в том, что **только в одном случае** для рассматриваемых выше реакций (1)-(12) все отрезки $\{(\mathbf{r}.\ 1=\mathrm{T3K}_{n(bas)=1})-\mathrm{Ca}^{2+}\}$, $\{(\mathbf{r}.\ 4=\mathrm{T3K}_{n(bas)=1})-\mathrm{Ir}^{4+}\}$, $\{(\mathbf{r}.\ 7=\mathrm{T3K}_{n(bas)=1})-\mathrm{Ir}^{5+}\}$, $\{(\mathbf{r}.\ 3=\mathrm{T3K}_{n(bas)=1})-\mathrm{CaO}\}$, $\{(\mathbf{r}.\ 6=\mathrm{T3K}_{n(bas)=1})-\mathrm{Ir}\mathrm{O}_2\}$ и $\{(\mathbf{r}.\ 9=\mathrm{T3K}_{n(bas)=1})-\mathrm{Ir}\mathrm{O}_2\}$ и $\{(\mathbf{r}.\ 9=\mathrm{T3K}_{n(bas)=1})-\mathrm{Ir}\mathrm{O}_2\}$ пересекаются только в одной точке, $(\mathbf{r}.\ 12=\mathrm{Y3K}_{n(bas)=1})$ на рис. 1. Это соответствует случаю, когда все три ЧГС основаны базовым кластером ($(\mathrm{Ca}_2\mathrm{Ir}^{4+}_{10}\mathrm{Ir}^{5+}_{8}\mathrm{O}_{60}=\mathrm{YXC}_{n(bas)=1}=\mathrm{r}.\ 10)$, который, в свою очередь, образован взаимодействием трех компонентных базовых кластеров ($(\mathrm{Ca}_5\mathrm{Ir}^{5+}_2\mathrm{O}_{10}=\mathrm{TXC}_{n(bas)=1}=\mathrm{r}.\ 5)$ с $\mathrm{Ir}\mathrm{O}_2$, ($(\mathrm{Ca}_2\mathrm{Ir}^{4+}\mathrm{O}_4=\mathrm{TXC}_{n(bas)=1}=\mathrm{r}.\ 2)$ с CaO . В тоже время, $\mathrm{TXC}_{n(bas)=1}=\mathrm{r}.\ 5$, $\mathrm{T}.\ 8$ и $\mathrm{T}.\ 2$, полученные согласно уравнениям реакций (2) и (13) и (24) также могут взаимодействовать с недостающим в их составе ДХС-окислом, $\mathrm{Ir}\mathrm{O}_2$ и $\mathrm{Ir}_2\mathrm{O}_5$ и CaO , соответственно, с образованием одного общего для них базового кластера ($\mathrm{YXC}_{n(bas)=1}=\mathrm{r}.\ 10$) на рис. 1:

$$2\left(\operatorname{Ir^{4+}}_{5}\operatorname{Ir^{5+}}_{4}\operatorname{O}_{20} = \operatorname{TXC}_{\operatorname{n(bas)}=1} = \pi. \ 2\right) + 20\operatorname{CaO} = 4\left(\operatorname{Ca}_{5}\operatorname{Ir^{5+}}_{2}\operatorname{O}_{10} = \operatorname{TXC}_{\operatorname{n(bas)}=1} = \pi. \ 5\right) + 10\operatorname{IrO}_{2} = 10\left(\operatorname{Ca}_{2}\operatorname{Ir^{4+}}_{04} = \operatorname{TXC}_{\operatorname{n(bas)}=1} = \pi. \ 8\right) + 4\operatorname{Ir}_{2}\operatorname{O}_{5} = \left(\operatorname{Ca}_{20}\operatorname{Ir^{4+}}_{10}\operatorname{Ir^{5+}}_{8}\operatorname{O_{60}} = \operatorname{YXC}_{\operatorname{n(bas)}=1} = \pi. \ 10\right)$$

$$(38)$$

Причем, кластер ($43K_{n(bas)=1}$ = т. 12) связан с кластером ($4XC_{n(bas)=1}$ = т. 10) реакцией окисления на рис. 1:

$$\left(\left[\text{Ca}_{20} \text{Ir}^{4+}_{10} \text{Ir}^{5+}_{8} \text{O}_{20} \right]^{60+} = \text{H3K}_{\text{n(bas)}=1} = \text{T. } 12 \right) + 40\text{O}^{2-} =
= \left(\text{Ca}_{20} \text{Ir}^{4+}_{10} \text{Ir}^{5+}_{8} \text{O}_{60} = \text{HXC}_{\text{n(bas)}=1} = \text{T. } 10 \right)$$
(39)

Заключение

Трех компонентные подсистемы ($Ir^{4+} - Ir^{5+} - O^{2-}$), ($Ca^{2+} - Ir^{5+} - O^{2-}$) и ($Ca^{2+} - Ir^{4+} - O^{2-}$) являются частью четырех компонентной системы ($Ca^{2+} - Ir^{4+} - Ir^{5+} - O^{2-}$). Трех компонентные подсистемы представляются треугольником, в углы основания которого помещены положительно заряженные ионы XЭ, а в его вершину помещен анион. Геометрические особенности треугольника, представляющего трех компонентную подсистему, позволяют рассчитать химические взаимодействия членов подсистемы и выявить среди них те, которые участвуют в формировании ТГС. Это удается осуществить в результате рассмотрения цепи последовательно протекающих химических взаимодействий ионов XЭ и

более сложных по составу ТХС и ТЗК, начиная с образования двух компонентных ХС, СаО, IrO_2 и Ir_2O_5 . В результате, для трех компонентных подсистем расчетом определены формулы шести Γ C: $Ca_5Ir^{5+}{}_{2n}O_{5n+5}$, $Ca_5nIr^{5+}{}_{2}O_{5n+5}$, $Ca_2Ir^{4+}{}_{n}O_{2n+2}$, $Ca_{2n}Ir^{4+}O_{2n+2}$, $Ir^{4+}{}_5Ir^{5+}{}_{4n}O_{10n+10}$ и $Ir^{4+}{}_{5n}Ir^{5+}{}_{4}O_{10n+10}$. Причем известные из экспериментальных работ [27], [28] и [32] соединения ($Ca_2Ir^{4+}O_4 = TXC_{n+1} = T$. 8) и ($Ca_2Ir^{4+}O_6 = TXC_{n+2} = T$. 26) принадлежат см- Γ C-3 $Ca_2Ir^{4+}O_{2n+2}$, а соединения ($Ca_2Ir^{4+}O_4 = TXC_{n+1} = T$. 8) и ($Ca_4Ir^{4+}O_6 = TXC_{n+2} = T$. 29), принадлежат сф- Γ C-4, $Ca_{2n}Ir^{4+}O_{2n+2}$ (рис. 3). Все они получены экспериментально и известны как термо- и кислотоустойчивые катализаторы для выделения кислорода в кислой среде [27], [28], [31]. Как выяснилось, члены трех компонентных подсистем принимают участие в формировании четырех компонентных Γ C системы ($Ca^{2+} - Ir^{4+} - Ir^{5+} - O^{2-}$).

Сказанное выше в соответствии с последовательным чередованием реакций взаимодействия компонент системы XЭ, начиная с образования ДХС-окислов, CaO, IrO₂ и Ir₂O, формируются **первые** три ЧГС, которые развиваются в направлении CaO, IrO₂ и Ir₂O₅. Первые ЧГС формируются в подсистемах (т. $3 - Ca^{2+} - O^{2-}$) — направление CaO, (т. $6 - Ir^{4+} - O^{2-}$) — направление IrO₂ и (т. $9 - Ir^{5+} - O^{2-}$) — направление Ir₂O₅ (рис. 1). Эти первые ЧГС основаны базовыми кластерами (ЧХС_{п(bas)=1} = т. $10 = Ca_{20}Ir^{4+}_{10}Ir^{5+}_{8}O_{60}$) и (ЧЗК_{п(bas)=1} = т. $12 = [Ca_{20}Ir^{4+}_{10}Ir^{5+}_{8}O_{20}]^{60+}$).

Конфликт интересов

Не указан.

Рецензия

Все статьи проходят рецензирование. Но рецензент или автор статьи предпочли не публиковать рецензию к этой статье в открытом доступе. Рецензия может быть предоставлена компетентным органам по запросу.

Conflict of Interest

None declared.

Review

All articles are peer-reviewed. But the reviewer or the author of the article chose not to publish a review of this article in the public domain. The review can be provided to the competent authorities upon request.

Список литературы / References

- 1. Magneli A. Studies on molybdenum and molybdenum wolfram oxides of the homologous series Me_nO_{3n-1}/A . Magneli, B. Blomberg, H.L. Kihlborg [et al.] // Acta chem. scand. 1955. Vol. 9. No. 8. P. 1382–1390. DOI: 10.3891/acta.chem.scand.09-1382
- 2. Andersson S. Phase analysis studies on the titanium-oxygen system / S. Andersson, B. Collen, U. Kuylenstierna [et al.] // Acta chem. scand. 1957. Vol. 11. № 10. P. 1641–1652. DOI: 10.3891/acta.chem.scand.11-1641
- 3. Andersson S. Studies on vanadium oxides / S. Andersson // Acta chem. scand. 1954. Vol. 8. \mathbb{N}_{2} 9. P. 1599–1606. DOI: 10.3891/acta.chem.scand.08-1599
- 4. Gado P. Wolfram tantalum and wolfram niobium oxides of the M_nO_{3n-2} (ReO₃) series / P. Gado, B. Holmberg, A. Magneli // Acta chem. scand. 1965. Vol. 19. № 8. P. 2010–2011. DOI: 10.3891/acta.chem.scand.19-2010
- 5. Gay P.L. Vacancy Ordering in Anion-deficient LaNiO $_3$ / P.L. Gay, C.N.R. Rao // Z. Naturforsch. 1975. Vol. 30a. N $_2$ 8. P. 1092–1093. DOI: 10.1515/zna-1975-0831
- 6. Goodenough J.B. Further evidence for the coexistence of localized and itinerant 3d electrons in La₂NiO₄ / J.B. Goodenough, S. Ramasesha // Mater. Res. Bull. 1982. Vol. 17. № 3. P. 383–390. DOI: 10.1016/0025-5408(82)90089-7
- 7. Савченко В.Ф. Синтез и электрические свойства двойного оксида лантана и никеля / В.Ф. Савченко, И.Я. Любкина // Неорганические материалы. 1986. Т. 22. № 9. С. 1483–1486. DOI: 10.1002/chin.198813036
- 8. Drennan J. An electron microscope investigation of phases in the system $La_{n+1}Ni_nO_{3n+1}/J$. Drennan, C.P. Tavares, B.C.H. Steele // Mater. Res. Bull. 1982. Vol. 17. No 5. P. 621.
- 9. Ruddlesden S.N. The compound $Sr_3Ti_3O_7$ and its structure / S.N. Ruddlesden, P. Popper // Acta Crystallographica. 1958. Vol. 11. P. 54–55. DOI: 10.1107/S0365110X58000128
- 10. Gutmann E. Oriented Growth of $Sr_{n+1}Ti_nO_{3n+1}$ Ruddlesden–Popper Phases in Chemical Solution Deposited Thin Films / E. Gutmann, A.A. Levin, M. Reibold // Journal of Solid State Chemistry. 2006. Vol. 179. № 6. P. 1864–1869. DOI: 10.1016/j.jssc.2006.02.021
- 11. Clearfield A. Preparation, structure, and ion-exchange properties of $Na_4Ti_9O_{20} \cdot xH_2O$ / A. Clearfield, J. Lehto // Journal of Solid State Chemistry. 1988. Vol. 73. P. 98–106. DOI: 10.1016/0022-4596(88)90059-X
- 12. Bykova T. Structural complexity of simple Fe_2O_3 at high pressures and temperatures / T. Bykova, L. Dubrovinsky, N. Dubrovinskaia [et al.] // Nature Communications. 2016. Vol. 7. P. 10661. DOI: 10.1038/ncomms10661
- 13. Ruddlesden S.N. The compound $Sr_3Ti_2O_7$ and its structure / S.N. Ruddlesden, P. Popper // Acta Crystallographica. 1958. Vol. 11. P. 54–55. DOI: 10.1107/S0365110X58000128
- 14. Klinkova L.A. On the existence of a homologous series of $Ba_mCu_{m+n}O_y$ oxides with the cubic structure of the $BaCuO_2$ oxide / L.A. Klinkova, V.I. Nikolaichik, N.V. Barkovskii [et al.] // Physica C: Superconductivity. 2010. Vol. 470. No. 22. P. 2067–2071. DOI: 10.1016/j.physc.2010.09.013
- 15. Poulus E.F. The crystal structure of $BaCuO_2$ / E.F. Poulus, G. Miehe, H. Fuess [et al.] // Journal of Solid State Chemistry. 1991. Vol. 90. N_2 1. P. 17–26. DOI: 10.1016/0022-4596(91)90166-F
- 16. Ундалов Ю.К. Прогнозирование формул многокомпонентных химических соединений: трехкомпонентные системы, формирование гомологических серий соединений / Ю.К. Ундалов // Журнал неорганической химии. 1998. Т. 43. № 9. С. 1561–1564.
- 17. Undalov Yu.K. Homologous series of chemical compounds: $(Li^+ Ti^{4+} O^{2-})$, $(Na^+ TI^{4+} O^{2-})$, $(K^+ V^{5+} O^{2-})$, $(Ba^{2+} Cu^{2+} O^{2-})$ and four-component systems $\{Li^+ Fe^{2+} (PO_4)^{3-}\}$ / Yu.K. Undalov, E.I. Terukov, D.V. Agafonov [et al.] // Izvestia of St. Petersburg State Institute of Technology (Technical University). 2021. Vol. 59. No. 85. P. 26–36. DOI: 10.36807/1998-9849-2021-59-85-26-36

- 18. Undalov Yu.K. Calculation of formulas of homologous series of chemical compounds (in generalized form): three-component systems ($A^{a^+} B^{b^+} C^{c^-}$) and ($Na^+ TI^{4^+} O^{2^-}$), ($Li^+ Ti^{4^+} O^{2^-}$), ($K^+ V^{5^+} O^{2^-}$), ($Ba^{2^+} Cu^{2^+} O^{2^-}$) / Yu.K. Undalov // Practice Oriented Science: UAE RUSSIA INDIA: materials of International University Scientific Forum, September 19. 2023. P. 73–92. DOI: 10.34660/INF.2023.39.95.228
- 19. Ундалов Ю.К. Гомологические серии химических соединений в трехкомпонентных системах ($A^{a^+} B^{b^+} C^{c^-}$) и ($Zn^{2^+} Ge^{4^+} P^{3^-}$) в обобщенном виде / Ю.К. Ундалов // CIFRA. Химия. 2024. Т. 1. № 1. С. 1–14. DOI: 10.18454/CHEM.2024.1.1
- 20. Undalov Yu.K. Homologous series of chemical compounds of $(Li^+ Ni^{3+} Mn^{3+} O^{2-})$ system / Yu.K. Undalov, E.I. Terukov, D.V. Agafonov [et al.] // Izvestia of St. Petersburg State Institute of Technology (Technical University). 2022. Vol. 60. N_{2} 86. P. 11.
- 21. Undalov Yu.K. Calculation of formulas of homologous series of chemical compounds (in generalized form): four-component systems ($A^{a^+} B^{b^+} D^{d^+} C^{c^-}$) and ($La^{3^+} Ni^{2^+} Ni^{3^+} O^{2^-}$) / Yu.K. Undalov // Practice Oriented Science: UAE RUSSIA INDIA: materials of International University Scientific Forum, September 19. 2023. P. 93–109. DOI: 10.34660/inf.2023.32.28.229
- 22. Undalov Yu.K. On the question of the direction of development of homologous series of chemical compounds / Yu.K. Undalov // Proceedings of the International Science Conference "SCIENCE. EDUCATION. PRACTICE", December 30. 2024. Pt. 1. P. 58–74.
- 23. Undalov Yu.K. Calculation of formulas of homologous series of chemical compounds (in generalized form): five-component systems ($A^{a^+} F^{f^+} [B_{rd}D_{wb}]^{(r^+ w)bd^+} C^{c^-}$) and ($Li^+ Fe^{4^+} [Sr_3La_2]^{12^+} O^{2^-}$) / Yu.K. Undalov // Practice Oriented Science: UAE RUSSIA INDIA: materials of International University Scientific Forum, September 19. 2023. P. 110–125. DOI: 10.34660/inf.2023.53.27.230
- 24. Undalov Yu.K. Homologous series of chemical compounds in the systems (A^{a^+} F^{f^+} $[B_{rd}D_{wb}]^{(r+w)bd^+}$ C^{c^-}) and (Bi^{3^+} Cu^{2^+} $[SrCa]^{4^+}$ - O^{2^-}) in generalized form / Yu.K. Undalov // CIFRA. Chemistry. 2024. N_2 1(1). DOI: 10.18454/CHEM.2024.1.3
- 25. Undalov Yu.K. Calculation of homologous series of chemical compounds of system (La³⁺ Sr²⁺ Ti⁴⁺ O²⁻), (Li⁺ Sr²⁺ La³⁺ Fe⁴⁺ O²⁻) / Yu.K. Undalov // Proceedings of the International Science Conference "SCIENCE. EDUCATION. PRACTICE", March 26. 2025. Pt. 2. Pt. 137–146. DOI: 10.34659/INF.2025.23.47.055
- 26. Ундалов Ю.К. Расчет гомологических серий химических соединений систем $\{Li^+ Fe^{2+} (PO_4)^{3-}\}$, $\{La^{3+} Sr^{2+} Ti^{4+} O^{2-}\}$, $\{Bi^{3+} Sr^{2+} Ca^{2+} Cu^{2+} O^{2-}\}$ / Ю.К. Ундалов // CIFRA. Химия. 2025. № 2(5). DOI: 10.60797/CHEM.2025.5.2
- 27. Burnett D.L. Exploiting the flexibility of the pyrochlore composition for acid-resilient iridium oxide electrocatalysts in proton exchange membranes / D.L. Burnett, T. Petrucco, R.J. Kashtiban // Journal of Materials Chemistry A. 2021. Vol. 9. N_2 44. P. 25114–25126. DOI: 10.1039/D1TA05457K
- 28. Sarkozy R.F. The characterization of calcium iridium oxides / R.F. Sarkozy, C.W. Moeller, B.L. Chamberland // Journal of Solid State Chemistry. 1974. Vol. 9. № 3. P. 242–246. DOI: 10.1016/0022-4596(74)90080-2
- 29. Wakeshima M. Electrical and magnetic properties of pseudo-one-dimension calcium iridium oxide Ca₅Ir₃O₁₂ / M. Wakeshima, N. Taira, Y. Hinatsu // Solid State Communications. 2003. Vol. 125. No 6. P. 311–315. DOI: 10.1016/S0038-1098(02)00823-2
- 30. Bozal-Ginesta C. Spectroelectrochemistry of water oxidation kinetics in molecular versus heterogeneous oxide iridium electrocatalysts / C. Bozal-Ginesta, R.R. Rao, C.A. Mesa [et al.] // Journal of the American Chemical Society. 2022. Vol. 144. N_{0} 19. P. 8454–8459. DOI: 10.1021/jacs.2c02006
- 31. Ундалов Ю.К. Гомологические серии химических соединений системы ($Ca^{2+} Ir^{4+} Ir^{5+} O^{2-}$) на базе соединения $Ca_5Ir^{4+}Ir^{5+}_2O_{12}$ / Ю.К. Унадлов // CIFRA. Химия. 2025. № 3(6). DOI: 10.60797/CHEM.2025.6.2
- 32. Keawprak N. Thermoelectric properties of Ca-Ir-O compounds prepared by spark plasma sintering / N. Keawprak, R. Tu, T. Goto // Materials Transactions. 2009. Vol. 50. № 4. P. 853–858. DOI: 10.2320/matertrans.MRA2008377

Список литературы на английском языке / References in English

- 1. Magneli A. Studies on molybdenum and molybdenum wolfram oxides of the homologous series Me_nO_{3n-1}/A . Magneli, B. Blomberg, H.L. Kihlborg [et al.] // Acta chem. scand. 1955. Vol. 9. № 8. P. 1382–1390. DOI: 10.3891/acta.chem.scand.09-1382
- 2. Andersson S. Phase analysis studies on the titanium-oxygen system / S. Andersson, B. Collen, U. Kuylenstierna [et al.] // Acta chem. scand. 1957. Vol. 11. № 10. P. 1641–1652. DOI: 10.3891/acta.chem.scand.11-1641
- 3. Andersson S. Studies on vanadium oxides / S. Andersson // Acta chem. scand. 1954. Vol. 8. № 9. P. 1599—1606. DOI: 10.3891/acta.chem.scand.08-1599
- 4. Gado P. Wolfram tantalum and wolfram niobium oxides of the M_nO_{3n-2} (ReO₃) series / P. Gado, B. Holmberg, A. Magneli // Acta chem. scand. 1965. Vol. 19. № 8. P. 2010–2011. DOI: 10.3891/acta.chem.scand.19-2010
- 5. Gay P.L. Vacancy Ordering in Anion-deficient LaNiO $_3$ / P.L. Gay, C.N.R. Rao // Z. Naturforsch. 1975. Vol. 30a. N $_2$ 8. P. 1092–1093. DOI: 10.1515/zna-1975-0831
- 6. Goodenough J.B. Further evidence for the coexistence of localized and itinerant 3d electrons in La_2NiO_4 / J.B. Goodenough, S. Ramasesha // Mater. Res. Bull. 1982. Vol. 17. N_2 3. P. 383–390. DOI: 10.1016/0025-5408(82)90089-7
- 7. Savchenko V.F. Sintez i elektricheskie svoistva dvoinogo oksida lantana i nikelya [Synthesis and electrical properties of lanthanum nickel double oxide] / V.F. Savchenko, I.Ya. Lyubkina // Neorganicheskie materiały [Inorganic Materials]. 1986. Vol. 22. № 9. P. 1483–1486. DOI: 10.1002/chin.198813036 [in Russian]

- 8. Drennan J. An electron microscope investigation of phases in the system $La_{n+1}Ni_nO_{3n+1}$ / J. Drennan, C.P. Tavares, B.C.H. Steele // Mater. Res. Bull. 1982. Vol. 17. N_{0} 5. P. 621.
- 9. Ruddlesden S.N. The compound $Sr_3Ti_3O_7$ and its structure / S.N. Ruddlesden, P. Popper // Acta Crystallographica. 1958. Vol. 11. P. 54–55. DOI: 10.1107/S0365110X58000128
- 10. Gutmann E. Oriented Growth of $Sr_{n+1}Ti_nO_{3n+1}$ Ruddlesden–Popper Phases in Chemical Solution Deposited Thin Films / E. Gutmann, A.A. Levin, M. Reibold // Journal of Solid State Chemistry. 2006. Vol. 179. № 6. P. 1864–1869. DOI: 10.1016/j.jssc.2006.02.021
- 11. Clearfield A. Preparation, structure, and ion-exchange properties of Na₄Ti₉O₂₀·xH₂O / A. Clearfield, J. Lehto // Journal of Solid State Chemistry. 1988. Vol. 73. P. 98–106. DOI: 10.1016/0022-4596(88)90059-X
- 12. Bykova T. Structural complexity of simple Fe_2O_3 at high pressures and temperatures / T. Bykova, L. Dubrovinsky, N. Dubrovinskaia [et al.] // Nature Communications. 2016. Vol. 7. P. 10661. DOI: 10.1038/ncomms10661
- 13. Ruddlesden S.N. The compound $Sr_3Ti_2O_7$ and its structure / S.N. Ruddlesden, P. Popper // Acta Crystallographica. 1958. Vol. 11. P. 54–55. DOI: 10.1107/S0365110X58000128
- 14. Klinkova L.A. On the existence of a homologous series of $Ba_mCu_{m+n}O_y$ oxides with the cubic structure of the $BaCuO_2$ oxide / L.A. Klinkova, V.I. Nikolaichik, N.V. Barkovskii [et al.] // Physica C: Superconductivity. 2010. Vol. 470. No. 22. P. 2067–2071. DOI: 10.1016/j.physc.2010.09.013
- 15. Poulus E.F. The crystal structure of $BaCuO_2$ / E.F. Poulus, G. Miehe, H. Fuess [et al.] // Journal of Solid State Chemistry. 1991. Vol. 90. № 1. P. 17–26. DOI: 10.1016/0022-4596(91)90166-F
- 16. Undalov Yu.K. Prognozirovanie formul mnogokomponentnykh khimicheskikh soedinenii: trekhkomponentnye sistemy, formirovanie gomologicheskikh serii soedinenii [Prediction of formulas of multicomponent chemical compounds: three-component systems, formation of homologous series of compounds] / Yu.K. Undalov // Zhurnal neorganicheskoi khimii [Russian Journal of Inorganic Chemistry]. 1998. Vol. 43. № 9. P. 1561–1564. [in Russian]
- 17. Undalov Yu.K. Homologous series of chemical compounds: $(Li^+ Ti^{4+} O^2)$, $(Na^+ TI^{4+} O^2)$, $(K^+ V^{5+} O^2)$, $(Ba^{2+} Cu^{2+} O^2)$ and four-component systems $\{Li^+ Fe^{2+} (PO_4)^{3-}\}$ / Yu.K. Undalov, E.I. Terukov, D.V. Agafonov [et al.] // Izvestia of St. Petersburg State Institute of Technology (Technical University). 2021. Vol. 59. N_0 85. P. 26–36. DOI: 10.36807/1998-9849-2021-59-85-26-36
- 18. Undalov Yu.K. Calculation of formulas of homologous series of chemical compounds (in generalized form): three-component systems ($A^{a^+} B^{b^+} C^{c^-}$) and ($Na^+ TI^{4^+} O^{2^-}$), ($Li^+ Ti^{4^+} O^{2^-}$), ($K^+ V^{5^+} O^{2^-}$), ($Ba^{2^+} Cu^{2^+} O^{2^-}$) / Yu.K. Undalov // Practice Oriented Science: UAE RUSSIA INDIA: materials of International University Scientific Forum, September 19. 2023. P. 73–92. DOI: 10.34660/INF.2023.39.95.228
- 19. Undalov Yu.K. Gomologicheskie serii khimicheskikh soedinenii v trekhkomponentnykh sistemakh $(A^{a^+} B^{b^+} C^{c^-}) \mu$ ($Zn^{2^+} Ge^{4^+} P^{3^-}$) v obobshchennom vide [Homologous series of chemical compounds in three-component systems $(A^{a^+} B^{b^+} C^{c^-}) \mu$ ($Zn^{2^+} Ge^{4^+} P^{3^-}$) in generalized form] / Yu.K. Undalov // CIFRA. Khimiya [CIFRA. Chemistry]. 2024. Vol. 1. No 1. P. 1–14. DOI: 10.18454/CHEM.2024.1.1 [in Russian]
- 20. Undalov Yu.K. Homologous series of chemical compounds of $(Li^+ Ni^{3+} Mn^{3+} O^{2-})$ system / Yu.K. Undalov, E.I. Terukov, D.V. Agafonov [et al.] // Izvestia of St. Petersburg State Institute of Technology (Technical University). 2022. Vol. 60. N_0 86. P. 11.
- 21. Undalov Yu.K. Calculation of formulas of homologous series of chemical compounds (in generalized form): four-component systems ($A^{a^+} B^{b^+} D^{d^+} C^{c^-}$) and ($La^{3^+} Ni^{2^+} Ni^{3^+} O^{2^-}$) / Yu.K. Undalov // Practice Oriented Science: UAE RUSSIA INDIA: materials of International University Scientific Forum, September 19. 2023. P. 93–109. DOI: 10.34660/inf.2023.32.28.229
- 22. Undalov Yu.K. On the question of the direction of development of homologous series of chemical compounds / Yu.K. Undalov // Proceedings of the International Science Conference "SCIENCE. EDUCATION. PRACTICE", December 30. 2024. Pt. 1. P. 58–74.
- 23. Undalov Yu.K. Calculation of formulas of homologous series of chemical compounds (in generalized form): five-component systems ($A^{a^+} F^{f^+} [B_{rd}D_{wb}]^{(r^+ w)bd^+} C^{c^-}$) and ($Li^+ Fe^{4^+} [Sr_3La_2]^{12^+} O^{2^-}$) / Yu.K. Undalov // Practice Oriented Science: UAE RUSSIA INDIA: materials of International University Scientific Forum, September 19. 2023. P. 110–125. DOI: 10.34660/inf.2023.53.27.230
- 24. Undalov Yu.K. Homologous series of chemical compounds in the systems (A^{a^+} F^{f^+} $[B_{rd}D_{wb}]^{(r+w)bd^+}$ C^{c^-}) and (Bi^{3^+} Cu^{2^+} $[SrCa]^{4^+}$ - O^{2^-}) in generalized form / Yu.K. Undalov // CIFRA. Chemistry. 2024. N_2 1(1). DOI: 10.18454/CHEM.2024.1.3
- 25. Undalov Yu.K. Calculation of homologous series of chemical compounds of system (La³⁺ Sr²⁺ Ti⁴⁺ O²⁻), (Li⁺ Sr²⁺ La³⁺ Fe⁴⁺ O²⁻) / Yu.K. Undalov // Proceedings of the International Science Conference "SCIENCE. EDUCATION. PRACTICE", March 26. 2025. Pt. 2. Pt. 137–146. DOI: 10.34659/INF.2025.23.47.055
- 26. Undalov Yu.K. Raschet gomologicheskikh serii khimicheskikh soedinenii sistem $\{Li^+ Fe^{2+} (PO4)^{3-}\}$, $(La^{3+} Sr^{2+} Ti^{4+} O^{2-})$, $(Bi^{3+} Sr^{2+} Ca^{2+} Cu^{2+} O^{2-})$ [Calculation of homologous series of chemical compounds of systems $\{Li^+ Fe^{2+} (PO4)^{3-}\}$, $(La^{3+} Sr^{2+} Cu^{2+} O^{2-})$ [Calculation of homologous series of chemical compounds of systems $\{Li^+ Fe^{2+} (PO4)^{3-}\}$, $(La^{3+} Sr^{2+} Ti^{4+} O^{2-})$, $(Bi^{3+} Sr^{2+} Ca^{2+} Cu^{2+} O^{2-})$] / Yu.K. Undalov // CIFRA. Khimiya [CIFRA. Chemistry]. 2025. № 2(5). DOI: 10.60797/CHEM.2025.5.2. [in Russian]
- 27. Burnett D.L. Exploiting the flexibility of the pyrochlore composition for acid-resilient iridium oxide electrocatalysts in proton exchange membranes / D.L. Burnett, T. Petrucco, R.J. Kashtiban // Journal of Materials Chemistry A. 2021. Vol. 9. N_0 44. P. 25114–25126. DOI: 10.1039/D1TA05457K
- 28. Sarkozy R.F. The characterization of calcium iridium oxides / R.F. Sarkozy, C.W. Moeller, B.L. Chamberland // Journal of Solid State Chemistry. 1974. Vol. 9. № 3. P. 242–246. DOI: 10.1016/0022-4596(74)90080-2

- 29. Wakeshima M. Electrical and magnetic properties of pseudo-one-dimension calcium iridium oxide Ca₅Ir₃O₁₂ / M. Wakeshima, N. Taira, Y. Hinatsu // Solid State Communications. 2003. Vol. 125. No. 6. P. 311–315. DOI: 10.1016/S0038-1098(02)00823-2
- 30. Bozal-Ginesta C. Spectroelectrochemistry of water oxidation kinetics in molecular versus heterogeneous oxide iridium electrocatalysts / C. Bozal-Ginesta, R.R. Rao, C.A. Mesa [et al.] // Journal of the American Chemical Society. 2022. Vol. 144. \mathbb{N}_2 19. P. 8454–8459. DOI: 10.1021/jacs.2c02006
- 31. Undalov Yu.K. Gomologicheskie serii khimicheskikh soedinenii sistemy ($Ca^{2+} Ir^{4+} Ir^{5+} O^{2-}$) na baze soedineniya $Ca_5Ir^{4+}Ir^{5+}_2O_{12}$ [Homologous series of chemical compounds of the system ($Ca^{2+} Ir^{4+} Ir^{5+} O^{2-}$) based on the compound $Ca_5Ir^{4+}Ir^{5+}_2O_{12}$] / Yu.K. Undalov // CIFRA. Khimiya [CIFRA. Chemistry]. 2025. No 3(6). DOI: 10.60797/CHEM.2025.6.2 [in Russian]
- 32. Keawprak N. Thermoelectric properties of Ca-Ir-O compounds prepared by spark plasma sintering / N. Keawprak, R. Tu, T. Goto // Materials Transactions. 2009. Vol. 50. № 4. P. 853–858. DOI: 10.2320/matertrans.MRA2008377